Citation: | Zijian Wu, Haibo Chen. SUPER-CRITICAL PROBLEMS INVOLVING THE FRACTIONAL $P$-LAPLACIAN[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2065-2073. doi: 10.11948/20220353 |
This paper is concerned with the following non-local problems
$ \begin{equation*} (-\Delta)_p^su+V(x)|u|^{p-2}u=w+h(u), \mbox{ in } \mathbb{R}^2, \end{equation*} $
where $ 0<s<1<p<\infty $, $ sp<2 $ and $ 0<w\in L^\infty( \mathbb{R}^2) $. Here the nonlinearity $ h $ imposes no growth restriction. By new variational principles, a nontrivial solution to this problem is obtained. This result is new because of the super-critical nonlinearity $ h $.
[1] | M. Bhakta, S. Chakraborty, O. H. Miyagaki and P. Pucci, Fractional elliptic systems with critical nonlinearities, Nonlinearity, 2021, 34(21), 7540-7573. |
[2] | U. Biccari, M. Warma and E. Zuazua, Local elliptic regularity for the Dirichlet fractional Laplacian, Adv. Nonlinear Stud., 2017, 17(2), 387-409. doi: 10.1515/ans-2017-0014 |
[3] | L. Caffarelli, J. M. Roquejoffre and Y. Sire, Variational problems in free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 2010, 12(5), 1151-1179. |
[4] | J. Dávila, M. del Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schröodinger equation, J. Differ. Equ., 2014, 256(2), 858-892. doi: 10.1016/j.jde.2013.10.006 |
[5] | M. Felsinger, M. Kassmann and P. Voigt, The Dirichlet problem for nonlocal operators, Math. Z., 2015, 279(3-4), 779-809. doi: 10.1007/s00209-014-1394-3 |
[6] | M. M. Fall, F. Mahmoudi and E. Valdinoci, Ground states and concentration phenomena for the fractional Schrödinger equation, Nonlinearity, 2015, 28(6), 1937-1961. doi: 10.1088/0951-7715/28/6/1937 |
[7] | G. Franzina and G. Palatucci, Fractional $p$-eigenvalues, Riv. Math. Univ. Parma, 2014, 5(2), 373-386. |
[8] | P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. R. Soc. Edinb. Sect. A, 2012, 142(6), 1237-1262. doi: 10.1017/S0308210511000746 |
[9] | M. M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal., 2012, 263(8), 2205-2227. doi: 10.1016/j.jfa.2012.06.018 |
[10] |
A. Garroni and S. Muller, $\Gamma$-limit of a phase-field model of dislocations, SIAM J. Math. Anal., 2005, 36(6), 1943-1964. doi: 10.1137/S003614100343768X
CrossRef $\Gamma$-limit of a phase-field model of dislocations" target="_blank">Google Scholar |
[11] |
S. Goyal and K. Sreenadh, Existence of multiple solutions of $p$-fractional Laplace operator with sign-changing weight function, Adv. Nonlinear Anal., 2015, 4(1), 37-58. doi: 10.1515/anona-2014-0017
CrossRef $p$-fractional Laplace operator with sign-changing weight function" target="_blank">Google Scholar |
[12] | X. He and W. Zou, Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities, Calc. Var. Partial Differential Equations, 2016, 55(4), 1-39. |
[13] | N. Kuhestani and A. Moameni, Multiplicity results for elliptic problems with super-critical concave and convex nonlinearties, Calc. Var. Partial Differential Equations, 2018, 57(2), 1-12. |
[14] | N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A., 2000, 268(4-6), 298-305. doi: 10.1016/S0375-9601(00)00201-2 |
[15] |
N. Li and X. He, Positive solutions for a class of fractional $p$-Laplacian equation with critical Sobolev exponent and decaying potentials, Acta Math. Appl. Sin. Engl. Ser., 2022, 38(2), 463-483. doi: 10.1007/s10255-022-1090-8
CrossRef $p$-Laplacian equation with critical Sobolev exponent and decaying potentials" target="_blank">Google Scholar |
[16] | E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations, 2014, 49(1-2), 795-826. doi: 10.1007/s00526-013-0600-1 |
[17] | R. Mancinelli, D. Vergni and A. Vulpiani, Front propagation in reactive systems with anomalous diffusion, Phys. D., 2003, 185(3-4), 175-195. doi: 10.1016/S0167-2789(03)00235-5 |
[18] |
P. Pucci and L. Temperini, Existence for fractional $(p, q)$ systems with critical and Hardy terms in $\mathbb{R}^N$, Nonlinear Anal., 2021. DOI:10.1016/j.na.2021.112477.
CrossRef $(p, q)$ systems with critical and Hardy terms in |
[19] | A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1986, 3(2), 70-109. |
[20] |
C. E. Torres, Existence and symmetry result for fractional $p$-Laplacian in $\mathbb{R}^N$, Commun. Pure Appl. Anal., 2017, 16(1), 99-113. doi: 10.3934/cpaa.2017004
CrossRef $p$-Laplacian in |