2023 Volume 13 Issue 5
Article Contents

Ashish, Jinde Cao, Muhammad Aslam Noor. STABILIZATION OF FIXED POINTS IN CHAOTIC MAPS USING NOOR ORBIT WITH APPLICATIONS IN CARDIAC ARRHYTHMIA[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2452-2470. doi: 10.11948/20220350
Citation: Ashish, Jinde Cao, Muhammad Aslam Noor. STABILIZATION OF FIXED POINTS IN CHAOTIC MAPS USING NOOR ORBIT WITH APPLICATIONS IN CARDIAC ARRHYTHMIA[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2452-2470. doi: 10.11948/20220350

STABILIZATION OF FIXED POINTS IN CHAOTIC MAPS USING NOOR ORBIT WITH APPLICATIONS IN CARDIAC ARRHYTHMIA

  • Controlling chaos through stability in fixed and periodic states is used in various engineering problems such as heat convection, reduction control, spine-wave instability, traffic control models, cardiac arrhythmia, chemical chaos, etc. Traditionally, this process is done in the coordination of chaos and stability in fixed and periodic points by using fixed point iterative procedures. Therefore, this article deals with a novel alliance between stabilization in one-dimensional discrete maps and Noor fixed point iterative procedure. The procedure contains $\alpha$, $\beta$, $\gamma$ and $r$, as its four new control parameters due to which the stability rate increases more rapidly than the other existing procedures. The stability theorems and a few time varying examples for fixed and periodic points are studied using Noor control system. Further, the Lyapunov exponent property is also described and the maximum Lyapunov value is determined to examine the stability in fixed and periodic points. Moreover, an improved control-based cardiac arrhythmia model is discussed in the Noor control system. Surprisingly, it is noted that the added new parameters $\alpha$, $\beta$, and $\gamma$ may increase the stability in chaotic arrhythmia rapidly.

    MSC: 34N05, 37N35, 37D45
  • 加载中
  • [1] Ashish, M. Rani and R. Chugh, Julia sets and Mandelbrot sets in Noor orbit, Appl. Math. Comput., 2014, 228, 615–631.

    Google Scholar

    [2] Ashish, J. Cao and R. Chugh, Chaotic behavior of logistic map in superior orbit and an improved chaos-based traffic control model, Nonlinear Dyn., 2018, 94(2), 959–975. doi: 10.1007/s11071-018-4403-y

    CrossRef Google Scholar

    [3] Ashish and J. Cao, A novel fixed point feedback approach studying the dynamcial behaviour of standard logistic map, Int. J. Bifurc. Chaos, 2019, 29(1), 16.

    Google Scholar

    [4] Ashish, J. Cao and R. Chugh, Controlling chaos using superior feedback technique with applications in discrete traffic models, Int. J. Fuzzy Syst., 2019, 21(5), 1467–1479. doi: 10.1007/s40815-019-00636-8

    CrossRef Google Scholar

    [5] Ashish, J. Cao and R. Chugh, Discrete chaotification in modulated logistic system, Int. J. Bifurc. Chaos, 2021, 31(5), 14.

    Google Scholar

    [6] Ashish, J. Cao, F. Alsaadi and A. K. Malik, Discrete Superior Hyperbolicity in Chaotic Maps, Chaos: Theory and Applications, 2021, 3(1), 34–42. doi: 10.51537/chaos.936679

    CrossRef Google Scholar

    [7] Ashish, J. Cao and F. Alsaadi, Chaotic Evolution of Difference Equations in Mann Orbit, J. Appl. Anal. Comput., 2021, 11(6), 3063–3082.

    Google Scholar

    [8] Ashish and J. Cao, Dynamical interpretations of a generalized cubic map, J. Appl. Anal. Comput., 2022, 12(6), 2314–2329.

    Google Scholar

    [9] D. Baleanu, G. Wu, Y. Bai and F. Chen, Stability analysis of Caputo–like discrete fractional systems, Commun. Nonlinear Sci. Numer. Simulat., 2017, 48, 520–530. doi: 10.1016/j.cnsns.2017.01.002

    CrossRef Google Scholar

    [10] S. Boccaletti, C. Grebogi, Y. Lai, H. Mancini and D Maza, The control of chaos: theory and applications, Phys. Rep., 2000, 329, 103–197. doi: 10.1016/S0370-1573(99)00096-4

    CrossRef Google Scholar

    [11] P. Carmona and D. Franco, Control of chaotic behavior and prevention of extinction using constant proportional feedback, Nonlinear Anal. RWA, 2011, 12, 3719–3726.

    Google Scholar

    [12] R. Chugh, M. Rani and Ashish, Logistic map in Noor orbit, Chaos and Complexity Letters, 2012, 6(3), 167–175.

    Google Scholar

    [13] Q. Chen and J. Gao, Delay feedback control of the Lorenz-like system, Math. Probl. Eng., 2018, 1–13.

    Google Scholar

    [14] M. De Sousa Vieira and A. J. Lichtenberg, Controlling chaos using nonlinear feedback with delay, Phys. Rev. E, 1996, 54, 1200–1207. doi: 10.1103/PhysRevE.54.1200

    CrossRef Google Scholar

    [15] R. L. Devaney, A First Course in Chaotic Dynamical Systems: Theory and Experiment, Addison-Wesley, 1992.

    Google Scholar

    [16] J. E. Disbro and M. Frame, Traffic flow theory and chaotic behavior, Transp. Res. Rec., 1990, 1225, 109–115.

    Google Scholar

    [17] W. L. Ditto, S. N. Rauseo and M. L. Spano, Experimental control of chaos, Phys. Rev. Lett., 1991, 65(26), 3211–3214.

    Google Scholar

    [18] S. Elaydi, An Introduction to Difference Equations, Springer New York, NY, 2005.

    Google Scholar

    [19] A. Garfinkel, M. L. Spano, W. L. Ditto and J. N. Weiss, Controlling cardiac chaos, Science, 1992, 257, 1230–1235. doi: 10.1126/science.1519060

    CrossRef Google Scholar

    [20] D. Grether, A. Neumann and K. Nagel, Simulation of urban traffic control: A queue model approach, Procedia Comput. Sci., 2012, 10, 808–814. doi: 10.1016/j.procs.2012.06.104

    CrossRef Google Scholar

    [21] D. Jarrett and Y. Zhang, The dynamic behavior of road traffic flow: stability or chaos?, Applications of Fractals and Chaos: The Shape of Things, Springer Verlag, Berlin, 1993.

    Google Scholar

    [22] G. Jiang and W. Zheng, A simple method of chaos control for a class of chaotic discrete-time systems, Chaos Solitons Fractals, 2005, 23, 843–849. doi: 10.1016/j.chaos.2004.05.025

    CrossRef Google Scholar

    [23] M. Mukherjee and S. Halderb, Stabilization and control of chaos based on nonlinear dynamic Inversion, Energy Procedia, 2017, 117, 731–738. doi: 10.1016/j.egypro.2017.05.188

    CrossRef Google Scholar

    [24] M. A. Noor, New approximation schemes for general variational inequalities, J. Maths. Anal. Appl., 2000, 251, 217–229. doi: 10.1006/jmaa.2000.7042

    CrossRef Google Scholar

    [25] M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput., 2004, 251, 199–277.

    Google Scholar

    [26] M. A. Noor, K. I. Noor and M. T. Rassias, New trends in general variational inequalitiesm, Acta Appl. Mathemat., 2020, 170(1), 981–1064. doi: 10.1007/s10440-020-00366-2

    CrossRef Google Scholar

    [27] E. Ott, Chaos in dynamical systems, Cambridge University Press, 2nd ed., 2002.

    Google Scholar

    [28] E. Ott, C. Grebogi and J. A. Yorke, Controlling chaos, Phys. Rev. Lett., 1990, 64, 1196–1199. doi: 10.1103/PhysRevLett.64.1196

    CrossRef Google Scholar

    [29] H. S. Panigoro, M. Rayungsari and A. Suryanto, Bifurcation and chaos in a discrete-time fractional-order logistic modelwith Allee effect and proportional harvesting, J. Dyn. Control., 2023. https://doi.org/10.1007/s40435-022-01101-5. doi: 10.1007/s40435-022-01101-5

    CrossRef Google Scholar

    [30] S. Parthasarathy and S. Sinha, Controlling chaos in unidimensional maps using constant feedback, Phy. Rev. E, 1995, 51, 6239–6242. doi: 10.1103/PhysRevE.51.6239

    CrossRef Google Scholar

    [31] B. Peng, V. Petrov and K. Showalter, Controlling chemical chaos, J. Phys. Chem., 1991, 95, 4957–4959. doi: 10.1021/j100166a013

    CrossRef Google Scholar

    [32] B. T. Polyak, Chaos stabilization by predictive control, Autom. Remote Control, 2005, 66, 1791–1804. doi: 10.1007/s10513-005-0213-z

    CrossRef Google Scholar

    [33] K. Pyragas, Continuous control of chaos by self-controlling feedback, Phys. Lett., 1992, 170A, 421–428.

    Google Scholar

    [34] A. G. Radwan, K. Moaddy, K. N. Salama, S. Momani and I. Hashim, Control and switching synchronization of fractional order chaotic systems using active control technique, J. Adv. Res., 2014, 05, 125–132. doi: 10.1016/j.jare.2013.01.003

    CrossRef Google Scholar

    [35] Renu, Ashish and R. Chugh, On the dynamics of a discrete difference map in Mann orbit, Comput. Appl. Math., 2022, 226(41), 1–19.

    Google Scholar

    [36] H. Sadeghian, K. Merat, H. Salarieh and A. Alasty, On the fuzzy minimum entropy control to stabilize the unstable fixed points of chaotic maps, Appl. Math. Model., 2011, 35(3), 1016–1023. doi: 10.1016/j.apm.2010.07.036

    CrossRef Google Scholar

    [37] H. Salarieh and A. Alasty, Chaos control in uncertain dynamical systems using nonlinear delayed feedback, Chaos Solitons Fractals, 2009, 41, 67–71. doi: 10.1016/j.chaos.2007.11.007

    CrossRef Google Scholar

    [38] H. Salarieh and A. Alasty, Stabilizing unstable fixed points of chaotic maps via minimum entropy control, Chaos Solitons Fractals, 2008, 37, 763–769. doi: 10.1016/j.chaos.2006.09.062

    CrossRef Google Scholar

    [39] H. G. Schuster and M. B. Stemmler, Control of chaos by oscillating feedback, Phy. Rev. E, 1997, 56, 6410–6417. doi: 10.1103/PhysRevE.56.6410

    CrossRef Google Scholar

    [40] P. Shang, X. Li and S. Kame, Chaotic analysis of traffic time series, Chaos Solitons Fractals, 2005, 25, 121–128. doi: 10.1016/j.chaos.2004.09.104

    CrossRef Google Scholar

    [41] S. Sinha, Controlling chaos in biology, Curr. Sci., 1997, 73(11), 977–983.

    Google Scholar

    [42] J. Singer and H. H. Bau, Active control of convection, Phys. Fluids, 1991, 3(12), 2859–2865. doi: 10.1063/1.857831

    CrossRef Google Scholar

    [43] T. Ushio and S. Yamamoto, Prediction-based control of chaos, Phys Lett. A, 1999, 13(1), 34–35.

    Google Scholar

    [44] J. N. Weiss, A. Garfinkel, M. L. Spano and W. L. Ditto, Chaos and chaos control in biology, J. Clin. Invest., 1994, 93, 1355–1360. doi: 10.1172/JCI117111

    CrossRef Google Scholar

Figures(3)  /  Tables(1)

Article Metrics

Article views(2165) PDF downloads(207) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint