2023 Volume 13 Issue 5
Article Contents

Meng Gao, Anhui Gu. ATTRACTORS FOR RANDOM LATTICE DYNAMICAL SYSTEMS WITH INFINITE MULTIPLICATIVE COLORED NOISE[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2433-2451. doi: 10.11948/20220343
Citation: Meng Gao, Anhui Gu. ATTRACTORS FOR RANDOM LATTICE DYNAMICAL SYSTEMS WITH INFINITE MULTIPLICATIVE COLORED NOISE[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2433-2451. doi: 10.11948/20220343

ATTRACTORS FOR RANDOM LATTICE DYNAMICAL SYSTEMS WITH INFINITE MULTIPLICATIVE COLORED NOISE

  • In this paper, we establish the existence and uniqueness of random attractor for the first-order random lattice differential equation with a nonlinear colored noise at each node. We first rewrite the equation as a random evolution system and then prove the existence of a unique weak solution. Finally, we obtain the existence of a unique random attractor for the underlying random dynamical system.

    MSC: 60H15, 37L60, 35B41
  • 加载中
  • [1] C. Aliprantis and K. Border, Infinite Dimensional Analysis: A Hitchhikers Guide, Springer, Berlin, 2007.

    Google Scholar

    [2] L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.

    Google Scholar

    [3] P. Bates, B. Wang and K. Lu, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2001, 11, 143–153. doi: 10.1142/S0218127401002031

    CrossRef Google Scholar

    [4] P. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 2006, 6, 1–21. doi: 10.1142/S0219493706001621

    CrossRef Google Scholar

    [5] H. Bessaih, M. Garrido-Atienza, X. Han and B. Schmalfuss, Stochastic lattice dynamical systems with fractional noise, SIAM J. Math. Anal., 2017, 49, 1495–1518. doi: 10.1137/16M1085504

    CrossRef Google Scholar

    [6] T. Caraballo, M. Garrido-Atienza, B. Schmalfuss and J. Valero, Non–autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 2008, 21, 415–443. doi: 10.3934/dcds.2008.21.415

    CrossRef Google Scholar

    [7] T. Caraballo, X. Han, B. Schmalfuss and J. Valero, Random attractors for stochastic lattice dynamical systems with infinite multiplicative white noise, Nonlinear Anal., 2016, 130, 255–278. doi: 10.1016/j.na.2015.09.025

    CrossRef Google Scholar

    [8] T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, 2008, 3, 317–335. doi: 10.1007/s11464-008-0028-7

    CrossRef Google Scholar

    [9] S. N. Chow, Lattice Dynamical Systems, Lecture Notes in Math., 1822, Springer, Berlin, 2003, 1–102.

    Google Scholar

    [10] S. N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems, IEEE Trans. Circuits Syst., 1995, 42, 746–751. doi: 10.1109/81.473583

    CrossRef Google Scholar

    [11] L. O. Chua and T. Roska, The CNN paradigm, IEEE Trans. Circuits Syst., 1993, 40, 147–156.

    Google Scholar

    [12] F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 1996, 59, 21–45. doi: 10.1080/17442509608834083

    CrossRef Google Scholar

    [13] A. Gu, Asymptotic behavior of random lattice dynamical systems and their Wong-Zakai approximations, Discrete Contin. Dyn. Syst. Ser. B, 2019, 24, 5737–5767.

    Google Scholar

    [14] A. Gu and B. Wang, Asymptotic behavior of random Fitzhugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 2018, 23, 1689–1720.

    Google Scholar

    [15] M. Hilbert, A solid-solution model for inhomogeneous systems, Acta Metall., 1961, 9, 525–535. doi: 10.1016/0001-6160(61)90155-9

    CrossRef Google Scholar

    [16] O. Kallenberg, Foundations of Modern Probability, Springer-Verlag, New York, 1997.

    Google Scholar

    [17] R. Kapral, Discrete models for chemically reacting syetems, J. Math. Chem., 1991, 6, 113–163. doi: 10.1007/BF01192578

    CrossRef Google Scholar

    [18] J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 1987, 47, 556–572. doi: 10.1137/0147038

    CrossRef Google Scholar

    [19] L. Ridolfi, P. D'Odorico and F. Laio, Noise-Induced Phenomena in the Environmental Sciences, Cambridge University Press, New York, 2011.

    Google Scholar

    [20] G. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002.

    Google Scholar

    [21] G. Uhlenbeck and L. Ornstein, On the theory of Brownian motion, Phys. Rev., 1930, 36, 823–841. doi: 10.1103/PhysRev.36.823

    CrossRef Google Scholar

    [22] M. Wang and G. Uhlenbeck, On the theory of Brownian motion. II, Rev. Modern Phys., 1945, 17, 323–342. doi: 10.1103/RevModPhys.17.323

    CrossRef Google Scholar

    [23] X. Wang, J. Shen, K. Lu and B. Wang, Wong-Zakai approximations and random attractors for non-autonomous stochastic lattice systems, J. Differential Equations, 2021, 280, 477–516. doi: 10.1016/j.jde.2021.01.026

    CrossRef Google Scholar

    [24] M. Zgurovsky, P. Kasyanov, O. Kapustyan, J. Valero and N. Zadoianchuk, Attractors for Lattice Dynamical Systems, In: Evolution Inclusions and Variation Inequalities for Earth Data Processing Ⅲ. Advances in Mechanics and Mathematics, Springer, Berlin, 2012, 27.

    Google Scholar

Article Metrics

Article views(1712) PDF downloads(304) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint