2024 Volume 14 Issue 4
Article Contents

Fuchen Zhang, Fei Xu. DYNAMICAL BEHAVIOR OF THE GENERALIZED COMPLEX LORENZ CHAOTIC SYSTEM[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 1915-1931. doi: 10.11948/20220364
Citation: Fuchen Zhang, Fei Xu. DYNAMICAL BEHAVIOR OF THE GENERALIZED COMPLEX LORENZ CHAOTIC SYSTEM[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 1915-1931. doi: 10.11948/20220364

DYNAMICAL BEHAVIOR OF THE GENERALIZED COMPLEX LORENZ CHAOTIC SYSTEM

  • Author Bio: Email: fxu.feixu@gmail.com(F. Xu)
  • Corresponding author: Email: zhangfuchen1983@163.com(F. Zhang) 
  • Fund Project: The authors were supported by the Natural Science Foundation of Chongqing Municipality (Grant No. CSTB2022NSCQ-MSX1548), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Nos. KJQN202100813, KJQN201800818, KJCX2020037), the National Natural Science Foundation of China (Grant No. 12371137), Scientific and Technological Research Program of Chongqing Technology and Business University (Grant Nos. 1952012, 1952026, 1951075), the Program for Chongqing Key Laboratory of Social Economy and Applied Statistics (Grant No. ZDPTTD201909)
  • The purpose of this paper is to investigate the boundedness and global attractivity of the complex Lorenz system:

    $\dot x = \alpha \left( {y - x} \right),\dot y = \gamma x - cy - dxz,\dot z = - \beta z + \frac{1}{2}\left( {\bar xy + x\bar y} \right),$

    where $ \alpha,\beta,\gamma,c,d $ are real parameters, $ x $ and $ y $ are complex variables, $ z $ is a real variable, an overbar denotes complex conjugate variable and dots represent derivatives with respect to time. This system arises in many important applications in laser physics and rotating fluids dynamics. It is very interesting that we find that this system exhibits chaos phenomenon for the given parameters. Using generalized Lyapunov-like functions, we prove the existence of the ultimate bound set and the globally exponentially attractive set in this generalized complex Lorenz system. The rate of the trajectories is also obtained. Numerical simulations show the effectiveness and correctness of the conclusions. Finally, we present an application of our results that obtained in this paper.

    MSC: 34D06, 34H10
  • 加载中
  • [1] C. Chen, J. Cao and X. Zhang, The topological structure of the Rabinovich system having an invariant algebraic surface, Nonlinearity, 2008, 21, 211–220. doi: 10.1088/0951-7715/21/2/002

    CrossRef Google Scholar

    [2] G. Chen and T. Ueta, Yet another chaotic attractor, Int. J. Bifurc. Chaos Appl. Sci. Eng., 1999, 9, 1465–1466. doi: 10.1142/S0218127499001024

    CrossRef Google Scholar

    [3] H. K. Chen, Synchronization of two different chaotic systems: A new system and each of the dynamical systems Lorenz, Chen and Lu, Chaos, Solitons Fractals, 2005, 25, 1049–1056. doi: 10.1016/j.chaos.2004.11.032

    CrossRef Google Scholar

    [4] L. Chua, M. Komuro and T. Matsumoto, The double scroll family, IEEE Trans. Circuits Syst., 1986, 33(11), 1072–1118. doi: 10.1109/TCS.1986.1085869

    CrossRef Google Scholar

    [5] A. C. Fowler, J. D. Gibbon and M. J. McGuinness, The complex Lorenz equations, Physica D., 1982, 4, 139–163. doi: 10.1016/0167-2789(82)90057-4

    CrossRef Google Scholar

    [6] A. C. Fowler, J. D. Gibbon and M. J. McGuinness, The real and complex Lorenz equations and their relevance to physical systems, Physica D: Nonlinear Phenomena, 1983, 7(1–3), 126–134. doi: 10.1016/0167-2789(83)90123-9

    CrossRef Google Scholar

    [7] P. Frederickson, J. Kaplan, E. Yorke and J. Yorke, The Lyapunov dimension of strange attractors, J. Differ. Equ., 1983, 49(2), 185–207. doi: 10.1016/0022-0396(83)90011-6

    CrossRef Google Scholar

    [8] J. D. Gibbon and M. J. McGuinness, The real and complex Lorenz equations in rotating fluids and lasers, Physica D: Nonlinear Phenomena, 1982, 5(1), 108–122. doi: 10.1016/0167-2789(82)90053-7

    CrossRef Google Scholar

    [9] N. V. Kuznetsov, The Lyapunov dimension and its estimation via the Leonov method, Phys. Lett. A, 2016, 380(25–26), 2142–2149. doi: 10.1016/j.physleta.2016.04.036

    CrossRef Google Scholar

    [10] N. V. Kuznetsov, Theory of hidden oscillations and stability of control systems, J. Comput. Syst. Sci. Int., 2020, 59, 647–668. doi: 10.1134/S1064230720050093

    CrossRef Google Scholar

    [11] N. Kuznetsov, G. Leonov, T. Mokaev, A. Prasad and M. Shrimali, Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system, Nonlinear Dyn., 2018, 92(2), 267–285. doi: 10.1007/s11071-018-4054-z

    CrossRef Google Scholar

    [12] N. Kuznetsov, T. Mokaev, O. Kuznetsova, et al., The Lorenz system: Hidden boundary of practical stability and the Lyapunov dimension, Nonlin. Dyn., 2020, 102, 713–732. doi: 10.1007/s11071-020-05856-4

    CrossRef Google Scholar

    [13] N. Kuznetsov, T. Mokaev, V. Ponomarenko, E. Seleznev, N. Stankevich and L. Chua, Hidden attractors in Chua circuit: Mathematical theory meets physical experiments, Nonlinear Dyn., 2023, 111(6), 5859–5887. doi: 10.1007/s11071-022-08078-y

    CrossRef Google Scholar

    [14] G. Leonov, Lyapunov dimension formulas for Henon and Lorenz attractors, St. Petersburg Math. J., 2001, 13, 1–12.

    Google Scholar

    [15] G. Leonov, Bounds for attractors and the existence of homoclinic orbits in the Lorenz system, J. Appl. Math. Mech., 2001, 65(1), 19–32. doi: 10.1016/S0021-8928(01)00004-1

    CrossRef Google Scholar

    [16] G. Leonov and V. Boichenko, Lyapunov's direct method in the estimation of the Hausdorff dimension of attractors, Acta Appl. Math., 1992, 26(1), 1–60. doi: 10.1007/BF00046607

    CrossRef Google Scholar

    [17] G. Leonov, A. Bunin and N. Koksch, Attractor localization of the Lorenz system, Z. Angew. Math. Mech., 1978, 67, 649–656.

    Google Scholar

    [18] G. Leonov and N. Kuznetsov, Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2013, 23, 1330002. doi: 10.1142/S0218127413300024

    CrossRef Google Scholar

    [19] G. Leonov, N. Kuznetsov and T. Mokaev, Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion, Eur. Phys. J. Spec. Top., 2015, 224(8), 1421–1458. doi: 10.1140/epjst/e2015-02470-3

    CrossRef Google Scholar

    [20] G. Leonov, N. Kuznetsov and V. Vagaitsev, Hidden attractor in smooth Chua systems, Physica D., 2012, 41(18), 1482–1486.

    Google Scholar

    [21] X. Liao, Y. Fu, S. Xie and P. Yu, Globally exponentially attractive sets of the family of Lorenz systems, Sci. China, Ser. F., 2008, 51(3), 283–292.

    Google Scholar

    [22] S. Liu and P. Liu, Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters, Nonlinear Analysis: Real World Applications, 2011, 12, 3046–3055. doi: 10.1016/j.nonrwa.2011.05.006

    CrossRef Google Scholar

    [23] E. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 1963, 20, 130–141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

    CrossRef Google Scholar

    [24] J. Lu and G. Chen, A new chaotic attractor coined, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2002, 12(3), 659–661. doi: 10.1142/S0218127402004620

    CrossRef Google Scholar

    [25] E. E. Mahmoud, Dynamics and synchronization of new hyperchaotic complex Lorenz system, Mathematical and Computer Modelling, 2012, 55(7–8), 1951–1962. doi: 10.1016/j.mcm.2011.11.053

    CrossRef Google Scholar

    [26] G. M. Mahmoud, M. E. Ahmed and E. E. Mahmoud, Analysis of hyperchaotic complex Lorenz systems, International Journal of Modern Physics C, 2008, 19(10), 1477–1494. doi: 10.1142/S0129183108013151

    CrossRef Google Scholar

    [27] G. M. Mahmoud, M. A. Al-Kashif and S. A. Aly, Basic properties and chaotic synchronization of complex Lorenz system, International Journal of Modern Physics C, 2007, 18(02), 253–265. doi: 10.1142/S0129183107010425

    CrossRef Google Scholar

    [28] G. M. Mahmoud, M. A. Al-Kashif and A. A. Farghaly, Chaotic and hyperchaotic attractors of a complex nonlinear system, J. Phys. A: Math. Theor., 2008, 41(5), 055104. doi: 10.1088/1751-8113/41/5/055104

    CrossRef Google Scholar

    [29] W. Qin and G. Chen, On the boundedness of solutions of the Chen system, J. Math. Anal. Appl., 2007, 329(11), 445–451.

    Google Scholar

    [30] A. Rauh, L. Hannibal and N. B. Abraham, Global stability properties of the complex Lorenz model, Physica D: Nonlinear Phenomena, 1996, 99(1), 45–58. doi: 10.1016/S0167-2789(96)00129-7

    CrossRef Google Scholar

    [31] H. Richter, Controlling the Lorenz system: Combining global and local schemes, Chaos, Solitons Fractals, 2001, 12(13), 2375–2380. doi: 10.1016/S0960-0779(00)00216-2

    CrossRef Google Scholar

    [32] O. Rossler, An equation for hyperchaos, Phys. Lett. A., 1979, 2–3, 155–157.

    Google Scholar

    [33] L. Stenflo, Generalized Lorenz equations for acoustic-gravity waves in the atmosphere, Phys. Scr., 1996, 3, 83–84.

    Google Scholar

    [34] F. Zhang, R. Chen, X. Wang, X. Chen, C. Mu and X. Liao, Dynamics of a new 5D hyperchaotic system of Lorenz type, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2018, 28(3), 1850036. doi: 10.1142/S0218127418500360

    CrossRef Google Scholar

    [35] F. Zhang, Y. Li and C. Mu, Bounds of solutions of a kind of hyper-chaotic systems and application, J. Math. Res. Appl., 2013, 33(3), 345–352.

    Google Scholar

    [36] F. Zhang, X. Liao, C. Mu, G. Zhang and Y. Chen, On global boundedness of the Chen system, Discrete Contin. Dyn. Syst., Ser. B., 2017, 22(4), 1673–1681.

    Google Scholar

    [37] F. Zhang, X. Liao and G. Zhang, On the global boundedness of the Lu system, Appl. Math. Comput., 2016, 284, 332–339.

    Google Scholar

    [38] F. Zhang, X. Liao and G. Zhang, Some new results for the generalized Lorenz system, Qual. Theory Dyn. Syst., 2017, 16(3), 749–759. doi: 10.1007/s12346-016-0206-z

    CrossRef Google Scholar

    [39] F. Zhang, X. Liao, G. Zhang and C. Mu, Dynamical analysis of the generalized Lorenz systems, J. Dyn. Control Syst., 2017, 23(2), 349–362. doi: 10.1007/s10883-016-9325-8

    CrossRef Google Scholar

    [40] F. Zhang, X. Liao, G. Zhang, C. Mu, P. Zhou and M. Xiao, Dynamical behaviors of a generalized Lorenz family, Discrete Contin. Dyn. Syst., Ser. B., 2017, 22(10), 3707–3720.

    Google Scholar

    [41] F. Zhang, S. Liu and W. Yu, Characteristics of time-delay complex Lorenz chaotic system and its self-synchronization of time delay, Acta Phys. Sin., 2013, 62(22), 220505. doi: 10.7498/aps.62.220505

    CrossRef Google Scholar

    [42] F. Zhang, C. Mu and X. Li, On the boundness of some solutions of the Lu system, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2012, 22, 1250015. doi: 10.1142/S0218127412500150

    CrossRef Google Scholar

Figures(5)

Article Metrics

Article views(1157) PDF downloads(275) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint