2023 Volume 13 Issue 6
Article Contents

Lintao Liu, Haibo Chen, Jie Yang. DECAY PROPERTIES AND ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS FOR THE NONLINEAR FRACTIONAL SCHRÖDINGER-POISSON SYSTEM[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3136-3157. doi: 10.11948/20220378
Citation: Lintao Liu, Haibo Chen, Jie Yang. DECAY PROPERTIES AND ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS FOR THE NONLINEAR FRACTIONAL SCHRÖDINGER-POISSON SYSTEM[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3136-3157. doi: 10.11948/20220378

DECAY PROPERTIES AND ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS FOR THE NONLINEAR FRACTIONAL SCHRÖDINGER-POISSON SYSTEM

  • In this paper, we study the following nonlinear fractional Schrödinger-Poisson system

    $\begin{equation*}\left\{\begin{array}{ll}(-\Delta)^{s}u+\lambda V(x)u+\mu\phi u=|u|^{p-2}u, & \hbox{in}\; \mathbb{R}^3 , \\(-\Delta)^{s}\phi=u^{2}, & \hbox{in}\; \mathbb{R}^3, \end{array}\right.\end{equation*}$

    where $s\in(\frac{3}{4}, 1)$, $ 2<p<4$, $\lambda, \mu$ are positive parameters and the potential $V(x)$ is a nonnegative continuous function with a potential well $\Omega=int V^{-1}(0)$. By establishing truncation technique and the parameter-dependent compactness lemma, the existence, decay rate and asymptotic behavior of positive solutions are established. Moreover, we prove some nonexistence results in the case of $ 2<p\leq3$.

    MSC: 35J50, 35J20
  • 加载中
  • [1] A. Azzollini, P. d'Avenia and A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2010, 27(2), 779-791. doi: 10.1016/j.anihpc.2009.11.012

    CrossRef Google Scholar

    [2] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 2008, 345(1), 90-108. doi: 10.1016/j.jmaa.2008.03.057

    CrossRef Google Scholar

    [3] A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson equation, Commun. Contemp. Math., 2008, 10(3), 391-404. doi: 10.1142/S021919970800282X

    CrossRef Google Scholar

    [4] B. Abderrazek, On sublinear fractional Schrödinger-Poisson systems, Partial Differ. Equ. Appl., 2021, 2(3), DOI: 10.1007/s42985-021-00103-w.

    CrossRef Google Scholar

    [5] C. O. Alves and G. M. Figueiredo, Existence of positive solution for a planar Schrödinger-Poisson system with exponential growth, J. Math. Phys., 2019, 60(1), 011503. doi: 10.1063/1.5039627

    CrossRef Google Scholar

    [6] R. Cont and P. Tankov, Financial Modeling with Jump Processes, Chapman Hall/CRC Financial Mathematics Series, 2004, Boca Raton.

    Google Scholar

    [7] S. Y. A. Chang and M. González, Fractional Laplacian in conformal geometry, Adv. Math., 2011, 226(2), 1410-1432. doi: 10.1016/j.aim.2010.07.016

    CrossRef Google Scholar

    [8] G. M. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., 2003, 7(3), 417-423.

    Google Scholar

    [9] G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 2010, 248(3), 521-543. doi: 10.1016/j.jde.2009.06.017

    CrossRef Google Scholar

    [10] S. Chen, A. Fiscella, P. Pucci and X. Tang, Semiclassical ground state solutions for critical Schrödinger-Poisson systems with lower perturbations, J. Differential Equations, 2020, 268(6), 2672-2716. doi: 10.1016/j.jde.2019.09.041

    CrossRef Google Scholar

    [11] G. Che and H. Chen, Multiplicity and concentration of solutions for a fractional Schrödinger-Poisson system with sign-changing potential, Appl. Anal., 2023, 102(1), 253-274. doi: 10.1080/00036811.2021.1950692

    CrossRef Google Scholar

    [12] Y. Deren, C. Tugba and A. Ravi, Existence criteria of positive solutions for fractional p-Laplacian boundary value problems, Filomat, 2020, 34(11), 3789-3799. doi: 10.2298/FIL2011789Y

    CrossRef Google Scholar

    [13] T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 2004, 4(3), 307-322. doi: 10.1515/ans-2004-0305

    CrossRef Google Scholar

    [14] T. D'Aprile and J. Wei, On bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM J. Math. Anal., 2005, 37(1), 321-342. doi: 10.1137/S0036141004442793

    CrossRef Google Scholar

    [15] P. d'Avenia, Non-radially symmetric solution of the nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud., 2002, 2(2), 177-192. doi: 10.1515/ans-2002-0205

    CrossRef Google Scholar

    [16] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 2012, 136(5), 521-573. doi: 10.1016/j.bulsci.2011.12.004

    CrossRef Google Scholar

    [17] M. Du, L. Tian, J. Wang and F. Zhang, Existence and asymptotic behavior of solutions for nonlinear Schrödinger-Poisson systems with steep potential well, J. Math. Phys., 2016, 57(3), 257-274.

    Google Scholar

    [18] I. Ekeland, Convexity Methods in Hamiltonian mechanics, Springer, Berlin, 1990.

    Google Scholar

    [19] P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 2012, 142(6), 1237-1262. doi: 10.1017/S0308210511000746

    CrossRef Google Scholar

    [20] Z. Feng and Y. Su, Lions-type Theorem of the Fractional Laplacian and Applications, Dyn. Partial Differ. Equ., 2021, 18(3), 211-230. doi: 10.4310/DPDE.2021.v18.n3.a3

    CrossRef Google Scholar

    [21] L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations, 2006, 11(7), 813-840.

    Google Scholar

    [22] C. E. A Jose, C. Rodrigo and F. Diego, Existence of infinitely many small solutions for sublinear fractional Kirchhoff-Schrödinger-Poisson systems, Electron. J. Differential Equations, 2019, 2019(13), 1-18.

    Google Scholar

    [23] Y. Jia, Y. Gao and G. Zhang, Solutions for the Kirchhoff type equations with fractional Laplacian, J. Appl. Anal. Comput., 2020, 10(6), 2704-2710.

    Google Scholar

    [24] H. Kikuchi, Existence and stability of standing waves for Schrödinger-Poisson-Slater equation, Adv. Nonlinear Stud., 2007, 7(3), 403-437. doi: 10.1515/ans-2007-0305

    CrossRef Google Scholar

    [25] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 2000, 268(4-6), 298-305. doi: 10.1016/S0375-9601(00)00201-2

    CrossRef Google Scholar

    [26] N. Laskin, Fractional Schrödinger equation, Phys. Rev., 2002, 66(5 Pt 2), 56-108.

    Google Scholar

    [27] Z. Liu and S. Guo, On ground states solutions for the Schrödinger-Poisson equations with critical growth, J. Math. Anal. Appl., 2014, 412(1), 435-448. doi: 10.1016/j.jmaa.2013.10.066

    CrossRef Google Scholar

    [28] Y. Li, F. Li and J. Shi, Existence of a positive solution to Kirchhoff type problem without compactness conditions, J. Differential Equations, 2012, 253(7), 2285-2294. doi: 10.1016/j.jde.2012.05.017

    CrossRef Google Scholar

    [29] Y. Liu and Z. Liu, Multiplicity and concentration of solutions for fractional Schrödinger equation with sublinear perturbation and steep potential well, Comput. Math. Appl., 2016, 72(6), 1629-1640.

    Google Scholar

    [30] Y. Li and Q. Li, Lyapunov-type Inequalities for Fractional $ (p; q)$-Laplacian Systems, J. Nonl. Mod. Anal., 2019, 1(3), 397-413.

    $ (p; q)$-Laplacian Systems" target="_blank">Google Scholar

    [31] R. Metzler and J. Klafter, The random walks guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 2000, 339(1), 1-77. doi: 10.1016/S0370-1573(00)00070-3

    CrossRef Google Scholar

    [32] M. A. Ragusa, Parabolic Herz spaces and their applications, Appl. Math. Lett., 2012, 25(10), 1270-1273. doi: 10.1016/j.aml.2011.11.022

    CrossRef Google Scholar

    [33] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 2006, 237(2), 655-674. doi: 10.1016/j.jfa.2006.04.005

    CrossRef Google Scholar

    [34] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 2007, 60(1), 67-112. doi: 10.1002/cpa.20153

    CrossRef Google Scholar

    [35] J. Sun and T. Wu, Bound state nodal solutions for the non-autonomous Schrödinger-Poisson system in $ \mathbb{R}^{3}$, J. Differential Equations, 2020, 268(11), 7121-7163. doi: 10.1016/j.jde.2019.11.070

    CrossRef $ \mathbb{R}^{3}$" target="_blank">Google Scholar

    [36] J. Sun, T. Wu and Y. Wu, Existence of nontrivial solution for Schrödinger-Poisson systems with indefinite steep potential well, Z. Angew. Math. Phys., 2017, 68(3), 1-22.

    Google Scholar

    [37] K. Teng, Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differential Equations, 2016, 261(6), 3061-3106. doi: 10.1016/j.jde.2016.05.022

    CrossRef Google Scholar

    [38] K. Teng and R. P. Agarwal, Existence and concentration of positive ground state solutions for nonlinear fractional Schrödinger-Poisson system with critical growth, Math. Methods Appl. Sci., 2018, 42(17), 8258-8293.

    Google Scholar

    [39] L. Torres and E. Cesar, Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well, Commun. Pure Appl. Anal., 2016, 15(2), 535-547. doi: 10.3934/cpaa.2016.15.535

    CrossRef Google Scholar

    [40] Y. Wu and S. Taarabti, Existence of two positive solutions for two kinds of fractional p-Laplacian equations, J. Funct. Spaces, 2021, 2021(1-2), 1-9.

    Google Scholar

    [41] K. Wang, An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well, Commun. Pure Appl. Anal., 2021, 20(4), 1497-1519. doi: 10.3934/cpaa.2021030

    CrossRef Google Scholar

    [42] J. Yang and H. Chen, Multiplicity and concentration of positive solutions to the fractional Kirchhoff type problems involving sign-changing weight functions, Commun. Pure Appl. Anal., 2021, 20(9), 3047-3074.

    Google Scholar

    [43] L. Zhao and F. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 2008, 346(1), 155-169. doi: 10.1016/j.jmaa.2008.04.053

    CrossRef Google Scholar

    [44] W. Zhang, X. Tang and J. Zhang, Existence and concentration of solutions for Schrödinger-Poisson system with steep potential well, Math. Methods Appl. Sci., 2016, 39(10), 2549-2557. doi: 10.1002/mma.3712

    CrossRef Google Scholar

    [45] X. Zhang and S. Ma, Multi-bump solutions of Schrödinger-Poisson equations with steep potential well, Z. Angew. Math. Phys., 2015, 66(4), 1615-1631. doi: 10.1007/s00033-014-0490-x

    CrossRef Google Scholar

Article Metrics

Article views(1431) PDF downloads(277) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint