Citation: | Siham Ghiatou, John R. Graef, Toufik Moussaoui. SUCCESSIVE ITERATIONS FOR POSITIVE EXTREMAL SOLUTIONS OF BOUNDARY VALUE PROBLEMS ON THE HALF-LINE[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3158-3165. doi: 10.11948/20220531 |
The authors study the existence of positive extremal solutions to the differential equation
$ -u''+\lambda u=a\left(t\right)f(t, u(t)), \quad t\in I, $
subject to the boundary conditions
$ u\left(0 \right)=u\left(\infty \right)=0, $
where
[1] | S. D. Akgol and A. Zafer, Boundary value problems on half-line for second-order nonlinear impulsive differential equations, Math. Methods Appl. Sci., 2018, 41, 5459–5465. doi: 10.1002/mma.5089 |
[2] | I. Bachar, Combined effects in nonlinear singular second-order differential equations on the half-line, Electron. J. Differential Equations, 2015, 2015, No. 235, 12 pp. |
[3] | I. Bachar and H. Mâagli, Existence and global asymptotic behavior of positive solutions for combined second-order differential equations on the half-line, Adv. Nonlinear Anal., 2016, 5, 205–222. doi: 10.1515/anona-2015-0078 |
[4] | A. Benmezai, Existence of weak solutions for second-order BVPS on the half-line via critical point theory, Electron. J. Math. Anal. Appl., 2022, 10, 154–166. |
[5] | A. Benmezai and S. Mellal, Nodal solutions for asymptotically linear second-order BVPs on the half-line, Bull. Iranian Math. Soc., 2019, 45, 315–335. doi: 10.1007/s41980-018-0134-6 |
[6] | D. Bouafia and T. Moussaoui, Existence results for a sublinear second order Dirichlet boundary value problem on the half-line, Opuscula Math., 2020, 40, 537–548. doi: 10.7494/OpMath.2020.40.5.537 |
[7] | D. Bouafia, T. Moussaoui and D. O'Regan, Existence of solutions for a second order problem on the half-line via Ekeland's variational principle, Discuss. Math. Differ. Incl. Control Optim., 2016, 36, 131–140. doi: 10.7151/dmdico.1187 |
[8] | C. Corduneanu, Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973. |
[9] | S. Djebali and K. Mebarki, Singular semi-positone ϕ-Laplacian BVP on infinite interval in Banach spaces, Dynam. Systems Appl., 2016, 25, 197–217. |
[10] | S. Djebali and T. Moussaoui, A class of second order BVPs on infinite intervals, Electron. J. Qual. Theor. Differ. Eqs., 2006, 2006, No. 4, 1–19. |
[11] | M. Djibaoui and T. Moussaoui, Variational methods to second-order Dirichlet boundary value problems with impulses on the half-line, Cubo, 2022, 24, 227–237. doi: 10.56754/0719-0646.2402.0227 |
[12] | P. Habets and L. Sanchez, A monotone method for fourth order boundary value problems involving a factorizable linear operator, Portugal. Math., 2007, 64, 255–279. |
[13] | S. Heidarkhani, G. A. Afrouzi and S. Moradi, Existence results for a Kirchhoff-type second-order differential equation on the half-line with impulses, Asymptot. Anal., 2017, 105, 137–158. |
[14] | O. F. Imaga and S. A. Iyase, Existence of solution for a resonant p-Laplacian second-order m-point boundary value problem on the half-line with two dimensional kernel, Bound. Value Probl., 2020, 2020, Paper No. 114, 11 pp. |
[15] | W. Jiang, The existence of solutions for impulsive p-Laplacian boundary value problems at resonance on the half-line, Bound. Value Probl., 2015, 2015, No. 39, 13 pp. |
[16] | R. Khaldi and A. Guezane-Lakoud, Minimal and maximal solutions for a fractional boundary value problem at resonance on the half line, Fract. Differ. Calc., 2018, 8, 299–307. |
[17] | E. Liz and J. J. Nieto, The monotone iterative technique for periodic boundary value problems of second order impulsive differential equations, Comment. Math. Univ. Carolin., 1993, 34, 405–411. |
[18] | L. López-Somoza and F. Minhós, On multipoint resonant problems on the half-line, Bound. Value Probl., 2019, 2019, Paper No. 38, 19 pp. |
[19] | S. Matucci, A new approach for solving nonlinear BVP's on the half-line for second order equations and applications, Math. Bohem., 2015, 140, 153–169. doi: 10.21136/MB.2015.144323 |
[20] | H. Pang, M. Q. Feng, and W. G. Ge, Existence and monotone iteration of positive solutions for a three-point boundary value problem, Appl. Math. Lett., 2008, 21, 656–661. doi: 10.1016/j.aml.2007.07.019 |
[21] | M. Pei and S. K. Chang, Monotone iterative technique and symmetric positive solutions for a fourth order boundary value problem, Math. Comput. Modelling, 2010, 51, 1260–1267. doi: 10.1016/j.mcm.2010.01.009 |
[22] | E. Picard, Mémoire sur la théorie des équations aux dérivitées partielles et la méthode d'approximations successives, J. Math. Pures Appl., 1890, 6, 145–210. |
[23] | R. L. Pouso and J. Rodrigo López, Second-order discontinuous problems with nonlinear functional boundary conditions on the half-line, Electron. J. Qual. Theory Differ. Equ., 2018, 2018, Paper No. 79, 18 pp. |
[24] | P. J. Torres and M. Zhang, A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle, Math. Nachr., 2003, 251, 101–107. doi: 10.1002/mana.200310033 |
[25] | L. Zhang, B. Ahmed, and G. Wang, Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half-line, Bull. Austral. Math. Soc., 2015, 91, 116–128. |