2023 Volume 13 Issue 6
Article Contents

Siham Ghiatou, John R. Graef, Toufik Moussaoui. SUCCESSIVE ITERATIONS FOR POSITIVE EXTREMAL SOLUTIONS OF BOUNDARY VALUE PROBLEMS ON THE HALF-LINE[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3158-3165. doi: 10.11948/20220531
Citation: Siham Ghiatou, John R. Graef, Toufik Moussaoui. SUCCESSIVE ITERATIONS FOR POSITIVE EXTREMAL SOLUTIONS OF BOUNDARY VALUE PROBLEMS ON THE HALF-LINE[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3158-3165. doi: 10.11948/20220531

SUCCESSIVE ITERATIONS FOR POSITIVE EXTREMAL SOLUTIONS OF BOUNDARY VALUE PROBLEMS ON THE HALF-LINE

  • The authors study the existence of positive extremal solutions to the differential equation

    $ -u''+\lambda u=a\left(t\right)f(t, u(t)), \quad t\in I, $

    subject to the boundary conditions

    $ u\left(0 \right)=u\left(\infty \right)=0, $

    where $ I=(0, \infty) $, $ f: \mathbb{R^{+}\times R^{+}}\rightarrow \mathbb{R^{+}} $ is continuous, $ a:I\rightarrow \mathbb{R^{+}} $, and $ \lambda >0 $ is a parameter. Their results are obtained by using the monotone iterative method and are illustrated with an example.

    MSC: 47J25, 34B18, 34B25, 34B40, 34B15
  • 加载中
  • [1] S. D. Akgol and A. Zafer, Boundary value problems on half-line for second-order nonlinear impulsive differential equations, Math. Methods Appl. Sci., 2018, 41, 5459–5465. doi: 10.1002/mma.5089

    CrossRef Google Scholar

    [2] I. Bachar, Combined effects in nonlinear singular second-order differential equations on the half-line, Electron. J. Differential Equations, 2015, 2015, No. 235, 12 pp.

    Google Scholar

    [3] I. Bachar and H. Mâagli, Existence and global asymptotic behavior of positive solutions for combined second-order differential equations on the half-line, Adv. Nonlinear Anal., 2016, 5, 205–222. doi: 10.1515/anona-2015-0078

    CrossRef Google Scholar

    [4] A. Benmezai, Existence of weak solutions for second-order BVPS on the half-line via critical point theory, Electron. J. Math. Anal. Appl., 2022, 10, 154–166.

    Google Scholar

    [5] A. Benmezai and S. Mellal, Nodal solutions for asymptotically linear second-order BVPs on the half-line, Bull. Iranian Math. Soc., 2019, 45, 315–335. doi: 10.1007/s41980-018-0134-6

    CrossRef Google Scholar

    [6] D. Bouafia and T. Moussaoui, Existence results for a sublinear second order Dirichlet boundary value problem on the half-line, Opuscula Math., 2020, 40, 537–548. doi: 10.7494/OpMath.2020.40.5.537

    CrossRef Google Scholar

    [7] D. Bouafia, T. Moussaoui and D. O'Regan, Existence of solutions for a second order problem on the half-line via Ekeland's variational principle, Discuss. Math. Differ. Incl. Control Optim., 2016, 36, 131–140. doi: 10.7151/dmdico.1187

    CrossRef Google Scholar

    [8] C. Corduneanu, Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973.

    Google Scholar

    [9] S. Djebali and K. Mebarki, Singular semi-positone ϕ-Laplacian BVP on infinite interval in Banach spaces, Dynam. Systems Appl., 2016, 25, 197–217.

    Google Scholar

    [10] S. Djebali and T. Moussaoui, A class of second order BVPs on infinite intervals, Electron. J. Qual. Theor. Differ. Eqs., 2006, 2006, No. 4, 1–19.

    Google Scholar

    [11] M. Djibaoui and T. Moussaoui, Variational methods to second-order Dirichlet boundary value problems with impulses on the half-line, Cubo, 2022, 24, 227–237. doi: 10.56754/0719-0646.2402.0227

    CrossRef Google Scholar

    [12] P. Habets and L. Sanchez, A monotone method for fourth order boundary value problems involving a factorizable linear operator, Portugal. Math., 2007, 64, 255–279.

    Google Scholar

    [13] S. Heidarkhani, G. A. Afrouzi and S. Moradi, Existence results for a Kirchhoff-type second-order differential equation on the half-line with impulses, Asymptot. Anal., 2017, 105, 137–158.

    Google Scholar

    [14] O. F. Imaga and S. A. Iyase, Existence of solution for a resonant p-Laplacian second-order m-point boundary value problem on the half-line with two dimensional kernel, Bound. Value Probl., 2020, 2020, Paper No. 114, 11 pp.

    Google Scholar

    [15] W. Jiang, The existence of solutions for impulsive p-Laplacian boundary value problems at resonance on the half-line, Bound. Value Probl., 2015, 2015, No. 39, 13 pp.

    Google Scholar

    [16] R. Khaldi and A. Guezane-Lakoud, Minimal and maximal solutions for a fractional boundary value problem at resonance on the half line, Fract. Differ. Calc., 2018, 8, 299–307.

    Google Scholar

    [17] E. Liz and J. J. Nieto, The monotone iterative technique for periodic boundary value problems of second order impulsive differential equations, Comment. Math. Univ. Carolin., 1993, 34, 405–411.

    Google Scholar

    [18] L. López-Somoza and F. Minhós, On multipoint resonant problems on the half-line, Bound. Value Probl., 2019, 2019, Paper No. 38, 19 pp.

    Google Scholar

    [19] S. Matucci, A new approach for solving nonlinear BVP's on the half-line for second order equations and applications, Math. Bohem., 2015, 140, 153–169. doi: 10.21136/MB.2015.144323

    CrossRef Google Scholar

    [20] H. Pang, M. Q. Feng, and W. G. Ge, Existence and monotone iteration of positive solutions for a three-point boundary value problem, Appl. Math. Lett., 2008, 21, 656–661. doi: 10.1016/j.aml.2007.07.019

    CrossRef Google Scholar

    [21] M. Pei and S. K. Chang, Monotone iterative technique and symmetric positive solutions for a fourth order boundary value problem, Math. Comput. Modelling, 2010, 51, 1260–1267. doi: 10.1016/j.mcm.2010.01.009

    CrossRef Google Scholar

    [22] E. Picard, Mémoire sur la théorie des équations aux dérivitées partielles et la méthode d'approximations successives, J. Math. Pures Appl., 1890, 6, 145–210.

    Google Scholar

    [23] R. L. Pouso and J. Rodrigo López, Second-order discontinuous problems with nonlinear functional boundary conditions on the half-line, Electron. J. Qual. Theory Differ. Equ., 2018, 2018, Paper No. 79, 18 pp.

    Google Scholar

    [24] P. J. Torres and M. Zhang, A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle, Math. Nachr., 2003, 251, 101–107. doi: 10.1002/mana.200310033

    CrossRef Google Scholar

    [25] L. Zhang, B. Ahmed, and G. Wang, Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half-line, Bull. Austral. Math. Soc., 2015, 91, 116–128.

    Google Scholar

Article Metrics

Article views(1419) PDF downloads(343) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint