2023 Volume 13 Issue 3
Article Contents

Qian Zhang, Lin Li. ON THE INVARIANCE OF GENERALIZED QUASIARITHMETIC MEANS[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1581-1596. doi: 10.11948/20220380
Citation: Qian Zhang, Lin Li. ON THE INVARIANCE OF GENERALIZED QUASIARITHMETIC MEANS[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1581-1596. doi: 10.11948/20220380

ON THE INVARIANCE OF GENERALIZED QUASIARITHMETIC MEANS

  • Author Bio: Email: qianmo2008@126.com(Q. Zhang)
  • Corresponding author: Email: matlinl@zjxu.edu.cn(L. Li)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (12126369, 12126358)
  • The generalized quasiarithmetic mean is generated by two functions and one probability measure, and includes quasiarithmetic, Cauchy and Bajraktarević meas. In this paper, we investigate the invariance of the arithmetic mean with respect to generalized quasiarithmetic means and get some solutions of it under high-order differentiability assumptions.

    MSC: 26E60, 39B22
  • 加载中
  • [1] J. Aczél and Z. Daróczy, Über verallgemeinerte quasilineare Mittelwerte, die mit Gewichtsfunktionen gebildet sind, Publ. Math. Debrecen, 1963, 10,171–190.

    Google Scholar

    [2] M. Bajraktarević, Sur une équation fonctionnelle aux valeurs moyennes, Glasnik Mat. Fiz. Astronom. Druŝtvo Mat. Fiz. Hrvatske Ser. Ⅱ, 1958, 13,243–248.

    Google Scholar

    [3] J. Domsta and J. Matkowski, Invariance of the arithmetic mean with respect to special mean-type mappings, Aequationes Math., 2006, 71(1–2), 70–85. doi: 10.1007/s00010-005-2791-9

    CrossRef Google Scholar

    [4] R. Günwald and Z. Páles, On the equality problem of generalized Bajraktarević means, Aequationes Math., 2020, 94,651–677. doi: 10.1007/s00010-019-00670-9

    CrossRef Google Scholar

    [5] R. Günwald and Z. Páles, On the invariance of the arithmetic mean with respect to generalized Bajraktarević means, Acta Math. Hungar., 2022,166(2), 594–613. doi: 10.1007/s10474-022-01230-5

    CrossRef Google Scholar

    [6] J. Jarczyk, Invariance in a class of Bajraktarević means, Nonlinear Anal., 2010, 72(5), 2608–2619. doi: 10.1016/j.na.2009.11.008

    CrossRef Google Scholar

    [7] J. Jarczyk and W. Jarczyk, On a functional equation appearing on the margins of a mean invariance problem, Annales Mathematicae Silesianae, 2020, 34(1), 96–103. doi: 10.2478/amsil-2020-0012

    CrossRef Google Scholar

    [8] L. Losonczi, Equality of two variable weighted means:reduction to differential equations, Aequationes Math., 1999, 58(3), 223–241. doi: 10.1007/s000100050110

    CrossRef Google Scholar

    [9] L. Losonczi and Z. Páles, Comparison of means generated by two functions and a measure, J. Math. Anal. Appl., 2008,345(1), 135–146. doi: 10.1016/j.jmaa.2008.04.004

    CrossRef Google Scholar

    [10] L. Losonczi and Z. Páles, Equality of two-variable functional means generated by different measures, Aequationes Math., 2011, 81(1–2), 31–53. doi: 10.1007/s00010-010-0059-5

    CrossRef Google Scholar

    [11] L. Losonczi, Z. Páles and A. Zakaria, On the equality of two-variable general functional means, Aequationes Math., 2021, 95, 1011–1036. doi: 10.1007/s00010-020-00755-w

    CrossRef Google Scholar

    [12] Z. Makó and Z. Páles, The invariance of the arithmetic mean with respect to generalized quasi-arithmetic means, J. Math. Anal. Appl., 2009,353, 8–23. doi: 10.1016/j.jmaa.2008.11.071

    CrossRef Google Scholar

    [13] J. Matkowski, Invariance of Bajraktarević mean with respect to quasi-arithmetic means, Publ. Math. Debrecen, 2012, 80(3–4), 441–455. doi: 10.5486/PMD.2012.5151

    CrossRef Google Scholar

    [14] J. Matkowski, Invariance of Bajraktarević means with respect to the Beckenbach-Gini means, Math. Slovaca, 2013, 63,493–502. doi: 10.2478/s12175-013-0111-8

    CrossRef Google Scholar

    [15] Z. Páles, On the characterization of quasi-arithmetic means with weight function, Aequationes Math., 1987, 32(2–3), 171–194.

    Google Scholar

    [16] Z. Páles and A. Zakaria, On the local and global comparison of generalized Bajraktarević means, J. Math. Anal. Appl., 2017,455,792–815. doi: 10.1016/j.jmaa.2017.05.073

    CrossRef Google Scholar

    [17] Z. Páles and A. Zakaria, On the invariance equation for two-variable weighted nonsymmetric Bajraktarević means, Aequationes Math., 2019, 93(1), 37–57. doi: 10.1007/s00010-018-0560-9

    CrossRef Google Scholar

    [18] Z. Páles and A. Zakaria, On the equality problem of two-variable Bajraktarević means under first-order differentiability assumptions, 2021. DOI: 10.48550/arXiv.2112.07396.

    Google Scholar

    [19] Z. Páles and A. Zakaria, Characterizations of the equality of two-variable generalized quasiarithmetic means, J. Math. Anal. Appl., 2022,507, 125813. doi: 10.1016/j.jmaa.2021.125813

    CrossRef Google Scholar

Article Metrics

Article views(1869) PDF downloads(326) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint