Citation: | Qian Zhang, Lin Li. ON THE INVARIANCE OF GENERALIZED QUASIARITHMETIC MEANS[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1581-1596. doi: 10.11948/20220380 |
The generalized quasiarithmetic mean is generated by two functions and one probability measure, and includes quasiarithmetic, Cauchy and Bajraktarević meas. In this paper, we investigate the invariance of the arithmetic mean with respect to generalized quasiarithmetic means and get some solutions of it under high-order differentiability assumptions.
[1] | J. Aczél and Z. Daróczy, Über verallgemeinerte quasilineare Mittelwerte, die mit Gewichtsfunktionen gebildet sind, Publ. Math. Debrecen, 1963, 10,171–190. |
[2] | M. Bajraktarević, Sur une équation fonctionnelle aux valeurs moyennes, Glasnik Mat. Fiz. Astronom. Druŝtvo Mat. Fiz. Hrvatske Ser. Ⅱ, 1958, 13,243–248. |
[3] | J. Domsta and J. Matkowski, Invariance of the arithmetic mean with respect to special mean-type mappings, Aequationes Math., 2006, 71(1–2), 70–85. doi: 10.1007/s00010-005-2791-9 |
[4] | R. Günwald and Z. Páles, On the equality problem of generalized Bajraktarević means, Aequationes Math., 2020, 94,651–677. doi: 10.1007/s00010-019-00670-9 |
[5] | R. Günwald and Z. Páles, On the invariance of the arithmetic mean with respect to generalized Bajraktarević means, Acta Math. Hungar., 2022,166(2), 594–613. doi: 10.1007/s10474-022-01230-5 |
[6] | J. Jarczyk, Invariance in a class of Bajraktarević means, Nonlinear Anal., 2010, 72(5), 2608–2619. doi: 10.1016/j.na.2009.11.008 |
[7] | J. Jarczyk and W. Jarczyk, On a functional equation appearing on the margins of a mean invariance problem, Annales Mathematicae Silesianae, 2020, 34(1), 96–103. doi: 10.2478/amsil-2020-0012 |
[8] | L. Losonczi, Equality of two variable weighted means:reduction to differential equations, Aequationes Math., 1999, 58(3), 223–241. doi: 10.1007/s000100050110 |
[9] | L. Losonczi and Z. Páles, Comparison of means generated by two functions and a measure, J. Math. Anal. Appl., 2008,345(1), 135–146. doi: 10.1016/j.jmaa.2008.04.004 |
[10] | L. Losonczi and Z. Páles, Equality of two-variable functional means generated by different measures, Aequationes Math., 2011, 81(1–2), 31–53. doi: 10.1007/s00010-010-0059-5 |
[11] | L. Losonczi, Z. Páles and A. Zakaria, On the equality of two-variable general functional means, Aequationes Math., 2021, 95, 1011–1036. doi: 10.1007/s00010-020-00755-w |
[12] | Z. Makó and Z. Páles, The invariance of the arithmetic mean with respect to generalized quasi-arithmetic means, J. Math. Anal. Appl., 2009,353, 8–23. doi: 10.1016/j.jmaa.2008.11.071 |
[13] | J. Matkowski, Invariance of Bajraktarević mean with respect to quasi-arithmetic means, Publ. Math. Debrecen, 2012, 80(3–4), 441–455. doi: 10.5486/PMD.2012.5151 |
[14] | J. Matkowski, Invariance of Bajraktarević means with respect to the Beckenbach-Gini means, Math. Slovaca, 2013, 63,493–502. doi: 10.2478/s12175-013-0111-8 |
[15] | Z. Páles, On the characterization of quasi-arithmetic means with weight function, Aequationes Math., 1987, 32(2–3), 171–194. |
[16] | Z. Páles and A. Zakaria, On the local and global comparison of generalized Bajraktarević means, J. Math. Anal. Appl., 2017,455,792–815. doi: 10.1016/j.jmaa.2017.05.073 |
[17] | Z. Páles and A. Zakaria, On the invariance equation for two-variable weighted nonsymmetric Bajraktarević means, Aequationes Math., 2019, 93(1), 37–57. doi: 10.1007/s00010-018-0560-9 |
[18] |
Z. Páles and A. Zakaria, On the equality problem of two-variable Bajraktarević means under first-order differentiability assumptions, 2021. DOI: |
[19] | Z. Páles and A. Zakaria, Characterizations of the equality of two-variable generalized quasiarithmetic means, J. Math. Anal. Appl., 2022,507, 125813. doi: 10.1016/j.jmaa.2021.125813 |