2023 Volume 13 Issue 3
Article Contents

Lanxin Huang, Jiabao Su. MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS QUASILINEAR SCHRÖDINGER–POISSON SYSTEM[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1597-1612. doi: 10.11948/20220404
Citation: Lanxin Huang, Jiabao Su. MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS QUASILINEAR SCHRÖDINGER–POISSON SYSTEM[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1597-1612. doi: 10.11948/20220404

MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS QUASILINEAR SCHRÖDINGER–POISSON SYSTEM

  • Author Bio: Email: 812419761@qq.com(L. Huang)
  • Corresponding author: Email: sujb@cnu.edu.cn.(J. Su)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (12271373, 12171326) and KZ202010028048
  • We consider the nonhomogeneous quasilinear Schrödinger–Poisson system

    $ \begin{align*} \begin{cases} -\Delta_{p} u+|u|^{p-2}u+\lambda\phi |u|^{p-2}u = |u|^{q-2}u+h(x) & \ \ \ \mathrm{in}\ \mathbb{R}^{3}, \\ -\Delta \phi = |u|^{p} &\ \ \ \mathrm{in}\ \mathbb{R}^{3}, \end{cases} \end{align*} $

    where $ 1<p<3 $, $ p<q<p^{*} = \frac{3p}{3-p} $, $ \Delta_{p} u = \hbox{div}(|\nabla u|^{p-2}\nabla u) $, $ \lambda >0 $ and $ h \not = 0 $. Under suitable assumptions on $ h $, the Ekeland's variational principle and the mountain pass theorem are applied to establish the existence of multiple solutions for this system. To the best of our knowledge, this paper is one of the first contributions to the study of the nonhomogeneous quasilinear Schrödinger–Poisson system.

    MSC: 35J10, 35J50, 35J60, 35J92
  • 加载中
  • [1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 1973, 14(4), 349–381. doi: 10.1016/0022-1236(73)90051-7

    CrossRef Google Scholar

    [2] A. Azzollini, Concentration and compactness in nonlinear Schrödinger–Poisson system with a general nonlinearity, J. Differential Equations, 2010,249(7), 1746–1763. doi: 10.1016/j.jde.2010.07.007

    CrossRef Google Scholar

    [3] A. Azzollini, P. d'Avenia and A. Pomponio, On the Schrödinger–Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. PoincaršŠ Anal. Non Linéaire, 2010, 27(2), 779–791. doi: 10.1016/j.anihpc.2009.11.012

    CrossRef Google Scholar

    [4] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger–Maxwell equations, J. Math. Anal. Appl., 2008,345(1), 90–108. doi: 10.1016/j.jmaa.2008.03.057

    CrossRef Google Scholar

    [5] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods Nonlinear Anal., 1998, 11(2), 283–293. doi: 10.12775/TMNA.1998.019

    CrossRef Google Scholar

    [6] V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 2002, 14(4), 409–420. doi: 10.1142/S0129055X02001168

    CrossRef Google Scholar

    [7] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 1983, 36(4), 437–477. doi: 10.1002/cpa.3160360405

    CrossRef Google Scholar

    [8] S. Chen and C. Tang, Multiple solutions for nonhomogeneous Schrödinger–Maxwell and Klein–Gordon–Maxwell equations on $\mathbb{R}^3$, NoDEA Nonlinear Differential Equations Appl., 2010, 17(5), 559–574. doi: 10.1007/s00030-010-0068-z

    CrossRef $\mathbb{R}^3$" target="_blank">Google Scholar

    [9] T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 2004,134(5), 893–906. doi: 10.1017/S030821050000353X

    CrossRef Google Scholar

    [10] P. d'Avenia, Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud., 2002, 2(2), 177–192. doi: 10.1515/ans-2002-0205

    CrossRef Google Scholar

    [11] Y. Du, J. Su and C. Wang, The Schrödinger–Poisson system with p–Laplacian, Appl. Math. Lett., 2021,120(107286), 1–7.

    Google Scholar

    [12] Y. Du, J. Su and C. Wang, On a quasilinear Schrödinger–Poisson system, J. Math. Anal. Appl., 2022,505(125446), 1–14.

    Google Scholar

    [13] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 1974, 47,324–353. doi: 10.1016/0022-247X(74)90025-0

    CrossRef Google Scholar

    [14] L. Huang, X. Wu and C. Tang, Multiple positive solutions for nonhomogeneous Schrödinger–Poisson systems with Berestycki-Lions type conditions, Electron. J. Differential Equations, 2021, 2021(1), 1–14.

    Google Scholar

    [15] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 1997, 28(10), 1633–1659. doi: 10.1016/S0362-546X(96)00021-1

    CrossRef Google Scholar

    [16] L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations, 2006, 11(7), 813–840.

    Google Scholar

    [17] Y. Jiang, Z. Wang and H. Zhou, Multiple solutions for a nonhomogeneous Schrödinger–Maxwell system in $\mathbb{R}^3$, Nonlinear Anal., 2013. DOI: 10.1016/j.na.2013.01.006.

    CrossRef $\mathbb{R}^3$" target="_blank">Google Scholar

    [18] S. Khoutir and H. Chen, Multiple nontrivial solutions for a nonhomogeneous Schrödinger–Poisson system in $\mathbb{R}^3$, Electron. J. Qual. Theory Differ. Equ., 2017. DOI: 10.14232/ejqtde.2017.1.28.

    CrossRef $\mathbb{R}^3$" target="_blank">Google Scholar

    [19] E. H. Lieb and M. Loss, Analysis, American Mathematical Society, 2001.

    Google Scholar

    [20] P. L. Lions, Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal., 1982, 49(3), 315–334. doi: 10.1016/0022-1236(82)90072-6

    CrossRef Google Scholar

    [21] J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, Springer-Verlag, New York, 1989.

    Google Scholar

    [22] D. Ruiz, The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 2006,237(2), 655–674. doi: 10.1016/j.jfa.2006.04.005

    CrossRef Google Scholar

    [23] A. Salvatore, Multiple solitary waves for a non-homogeneous Schrödinger–Maxwell system in $\mathbb{R}^3$, Adv. Nonlinear Stud., 2006, 6(2), 157–169. doi: 10.1515/ans-2006-0203

    CrossRef $\mathbb{R}^3$" target="_blank">Google Scholar

    [24] J. Su, Z. Wang and M. Willem, Weighted Sobolev embedding with unbounded and decaying radial potential, J. Differential Equations, 2007,238(1), 201–219. doi: 10.1016/j.jde.2007.03.018

    CrossRef Google Scholar

    [25] J. Su and Z. Wang, Sobolev type embedding and quasilinear elliptic equations with radial potentials, J. Differential Equations, 2011,250(1), 223–242. doi: 10.1016/j.jde.2010.08.025

    CrossRef Google Scholar

    [26] J. Sun and S. Ma, Ground state solutions for some Schrödinger–Poisson systems with periodic potentials, J. Differential Equations, 2016,260(3), 2119–2149. doi: 10.1016/j.jde.2015.09.057

    CrossRef Google Scholar

    [27] L. Wang, S. Ma and N. Xu, Multiple solutions for nonhomogeneous Schrödinger–Poisson equations with sign–changing potential, Acta Math. Sci. Ser. B, 2017, 37(2), 555–572. doi: 10.1016/S0252-9602(17)30021-8

    CrossRef Google Scholar

    [28] M. Willem, Minimax Theorems, Birkhäuser Boston, Inc., Boston, 1996.

    Google Scholar

    [29] Y. Ye, Multiple positive solutions for nonhomogeneous Schrödinger–Poisson system in $\mathbb{R}^3$, Lith. Math. J., 2020, 60(2), 276–287. doi: 10.1007/s10986-020-09476-8

    CrossRef $\mathbb{R}^3$" target="_blank">Google Scholar

    [30] L. Yin, X. Wu and C. Tang, Ground state solutions for an asymptotically 2–linear Schrödinger–Poisson system, Appl. Math. Lett., 2019. DOI: 10.1016/j.aml.2018.07.017.

    CrossRef Google Scholar

    [31] J. Zhang, J. M. doÓ and M. Squassina, Schrödinger–Poisson systems with a general critical nonlinearity, Commun. Contemp. Math., 2017, 19(4), 1–16.

    Google Scholar

    [32] Q. Zhang, F. Li and Z. Liang, Existence of multiple positive solutions to nonhomogeneous Schrödinger–Poisson system, Appl. Math. Comput., 2015. DOI:10.1016/j.amc.2015.02.044.

    CrossRef Google Scholar

Article Metrics

Article views(2161) PDF downloads(488) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint