Citation: | Lanxin Huang, Jiabao Su. MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS QUASILINEAR SCHRÖDINGER–POISSON SYSTEM[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1597-1612. doi: 10.11948/20220404 |
We consider the nonhomogeneous quasilinear Schrödinger–Poisson system
$ \begin{align*} \begin{cases} -\Delta_{p} u+|u|^{p-2}u+\lambda\phi |u|^{p-2}u = |u|^{q-2}u+h(x) & \ \ \ \mathrm{in}\ \mathbb{R}^{3}, \\ -\Delta \phi = |u|^{p} &\ \ \ \mathrm{in}\ \mathbb{R}^{3}, \end{cases} \end{align*} $
where $ 1<p<3 $, $ p<q<p^{*} = \frac{3p}{3-p} $, $ \Delta_{p} u = \hbox{div}(|\nabla u|^{p-2}\nabla u) $, $ \lambda >0 $ and $ h \not = 0 $. Under suitable assumptions on $ h $, the Ekeland's variational principle and the mountain pass theorem are applied to establish the existence of multiple solutions for this system. To the best of our knowledge, this paper is one of the first contributions to the study of the nonhomogeneous quasilinear Schrödinger–Poisson system.
[1] | A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 1973, 14(4), 349–381. doi: 10.1016/0022-1236(73)90051-7 |
[2] | A. Azzollini, Concentration and compactness in nonlinear Schrödinger–Poisson system with a general nonlinearity, J. Differential Equations, 2010,249(7), 1746–1763. doi: 10.1016/j.jde.2010.07.007 |
[3] | A. Azzollini, P. d'Avenia and A. Pomponio, On the Schrödinger–Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. PoincaršŠ Anal. Non Linéaire, 2010, 27(2), 779–791. doi: 10.1016/j.anihpc.2009.11.012 |
[4] | A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger–Maxwell equations, J. Math. Anal. Appl., 2008,345(1), 90–108. doi: 10.1016/j.jmaa.2008.03.057 |
[5] | V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods Nonlinear Anal., 1998, 11(2), 283–293. doi: 10.12775/TMNA.1998.019 |
[6] | V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 2002, 14(4), 409–420. doi: 10.1142/S0129055X02001168 |
[7] | H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 1983, 36(4), 437–477. doi: 10.1002/cpa.3160360405 |
[8] | S. Chen and C. Tang, Multiple solutions for nonhomogeneous Schrödinger–Maxwell and Klein–Gordon–Maxwell equations on $\mathbb{R}^3$, NoDEA Nonlinear Differential Equations Appl., 2010, 17(5), 559–574. doi: 10.1007/s00030-010-0068-z |
[9] | T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 2004,134(5), 893–906. doi: 10.1017/S030821050000353X |
[10] | P. d'Avenia, Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud., 2002, 2(2), 177–192. doi: 10.1515/ans-2002-0205 |
[11] | Y. Du, J. Su and C. Wang, The Schrödinger–Poisson system with p–Laplacian, Appl. Math. Lett., 2021,120(107286), 1–7. |
[12] | Y. Du, J. Su and C. Wang, On a quasilinear Schrödinger–Poisson system, J. Math. Anal. Appl., 2022,505(125446), 1–14. |
[13] | I. Ekeland, On the variational principle, J. Math. Anal. Appl., 1974, 47,324–353. doi: 10.1016/0022-247X(74)90025-0 |
[14] | L. Huang, X. Wu and C. Tang, Multiple positive solutions for nonhomogeneous Schrödinger–Poisson systems with Berestycki-Lions type conditions, Electron. J. Differential Equations, 2021, 2021(1), 1–14. |
[15] | L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 1997, 28(10), 1633–1659. doi: 10.1016/S0362-546X(96)00021-1 |
[16] | L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations, 2006, 11(7), 813–840. |
[17] | Y. Jiang, Z. Wang and H. Zhou, Multiple solutions for a nonhomogeneous Schrödinger–Maxwell system in $\mathbb{R}^3$, Nonlinear Anal., 2013. DOI: 10.1016/j.na.2013.01.006. |
[18] | S. Khoutir and H. Chen, Multiple nontrivial solutions for a nonhomogeneous Schrödinger–Poisson system in $\mathbb{R}^3$, Electron. J. Qual. Theory Differ. Equ., 2017. DOI: 10.14232/ejqtde.2017.1.28. |
[19] | E. H. Lieb and M. Loss, Analysis, American Mathematical Society, 2001. |
[20] | P. L. Lions, Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal., 1982, 49(3), 315–334. doi: 10.1016/0022-1236(82)90072-6 |
[21] | J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, Springer-Verlag, New York, 1989. |
[22] | D. Ruiz, The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 2006,237(2), 655–674. doi: 10.1016/j.jfa.2006.04.005 |
[23] | A. Salvatore, Multiple solitary waves for a non-homogeneous Schrödinger–Maxwell system in $\mathbb{R}^3$, Adv. Nonlinear Stud., 2006, 6(2), 157–169. doi: 10.1515/ans-2006-0203 |
[24] | J. Su, Z. Wang and M. Willem, Weighted Sobolev embedding with unbounded and decaying radial potential, J. Differential Equations, 2007,238(1), 201–219. doi: 10.1016/j.jde.2007.03.018 |
[25] | J. Su and Z. Wang, Sobolev type embedding and quasilinear elliptic equations with radial potentials, J. Differential Equations, 2011,250(1), 223–242. doi: 10.1016/j.jde.2010.08.025 |
[26] | J. Sun and S. Ma, Ground state solutions for some Schrödinger–Poisson systems with periodic potentials, J. Differential Equations, 2016,260(3), 2119–2149. doi: 10.1016/j.jde.2015.09.057 |
[27] | L. Wang, S. Ma and N. Xu, Multiple solutions for nonhomogeneous Schrödinger–Poisson equations with sign–changing potential, Acta Math. Sci. Ser. B, 2017, 37(2), 555–572. doi: 10.1016/S0252-9602(17)30021-8 |
[28] | M. Willem, Minimax Theorems, Birkhäuser Boston, Inc., Boston, 1996. |
[29] | Y. Ye, Multiple positive solutions for nonhomogeneous Schrödinger–Poisson system in $\mathbb{R}^3$, Lith. Math. J., 2020, 60(2), 276–287. doi: 10.1007/s10986-020-09476-8 |
[30] | L. Yin, X. Wu and C. Tang, Ground state solutions for an asymptotically 2–linear Schrödinger–Poisson system, Appl. Math. Lett., 2019. DOI: 10.1016/j.aml.2018.07.017. |
[31] | J. Zhang, J. M. doÓ and M. Squassina, Schrödinger–Poisson systems with a general critical nonlinearity, Commun. Contemp. Math., 2017, 19(4), 1–16. |
[32] | Q. Zhang, F. Li and Z. Liang, Existence of multiple positive solutions to nonhomogeneous Schrödinger–Poisson system, Appl. Math. Comput., 2015. DOI:10.1016/j.amc.2015.02.044. |