Citation: | Meixiang Chen. ALTERNATING PROJECTION METHOD FOR SOLVING DOUBLY STOCHASTIC INVERSE SINGULAR VALUE PROBLEMS WITH PRESCRIBED ENTRIES[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1613-1631. doi: 10.11948/20220424 |
Doubly stochastic inverse singular value problem with prescribed entries aims to construct a doubly stochastic matrix from the prescribed singular value and prescribed entries. In this paper, the doubly stochastic inverse singular value problem is considered as the problem of finding a point in the intersection of a compact set and a closed convex set. We present a numerical procedure which is based on an alternating projection process, for solving the problem. The method is iterative in nature. And each subproblem in the alternating projection method can be solved easily. Convergence properties of the algorithm are investigated and numerical results are presented to illustrate the effectiveness of our method.
[1] | I. Adelia, M. Taheria and M. M. Moghadama, A recursive method for constructing Doubly Stochastic matrices and Inverse Eigenvalue problem, Linear Algebra Appl., 2018,537,318–331. doi: 10.1016/j.laa.2017.10.005 |
[2] | Z. Bai, D. Chu and R. Tan, Computing the nearest doubly stochastic matrix with a prescribed entry, SIAM J. Sci. Comput., 2007, 29(2), 635–655. doi: 10.1137/050639831 |
[3] | Z. Bai, X. Jin and S. W. Vong, On some inverse singular value problems with Toeplitz-related structure, Numer. Algebra Control Optim., 2017, 2,187–192. |
[4] | Z. Bai, B. Morini and S. Xu, On the local convergence of an iterative approach for inverse singular value problems, J. Comput. Appl. Math., 2007,198,344–360. doi: 10.1016/j.cam.2005.06.050 |
[5] | X. Bao, A. Cao and J. Zhang, Noise reduction for modal parameters estimation using algorithm of solving partially described inverse singular value problem, Smart Mater. Struct., 2016, 25, 075035. doi: 10.1088/0964-1726/25/7/075035 |
[6] | H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 1996, 38,367–426. doi: 10.1137/S0036144593251710 |
[7] | R. A. Brualdi, Some applications of doubly stochastic matrices, Linear Algebra Appl., 1988,107, 77–100. doi: 10.1016/0024-3795(88)90239-X |
[8] | R. H. Chan, Z. Bai and B. Morini, On the convergence rate of a Newton-like method for inverse eigenvalue and inverse singular value problems, Int. J. Appl. Math., 2003, 13, 59–69. |
[9] | W. Cheney and A. Goldstein, Proximity maps for convex sets, Proc. Amer. Math. Soc., 1959, 10,448–450. doi: 10.1090/S0002-9939-1959-0105008-8 |
[10] | M. Chu, A fast recursive algorithm for constructing matrices with prescribed eigenvalues and singular values, SIAM J. Numer. Anal., 2000, 37, 1004–1020. doi: 10.1137/S0036142998339301 |
[11] | M. Chu and G. H. Golub, Inverse Eigenvalue Problems:Theory, Algorithms, and Applications, Oxford University Press, Oxford, UK, 2005. |
[12] | F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley Sons, New York, 1983. |
[13] | A. Douik and B. Hassibi, Manifold optimization over the set of doubly stochastic matrices:a second-order geometry, IEEE Trans. Signal Process., 2019, 67, 5761–5774. doi: 10.1109/TSP.2019.2946024 |
[14] | R. Escalante and M. Raydan, Alternating Projection Methods, Society for Industrial and Applied Mathematics, Philadelphia, 2011. |
[15] | N. W. Goel and N. Richter-Dyn, Stochastic Models in Biology, Academic Press, New York, 1974. |
[16] | U. Helmke and J. Moore, Optimization and Dynamical Systems, Proceedings of the IEEE, 1996. |
[17] | R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985. |
[18] | J. Malick, A dual approach to semidefinite least-squares problems, SIAM J. Matrix Anal. Appl., 2004, 26,272–284. doi: 10.1137/S0895479802413856 |
[19] | M. Marcus, Some properties and applications of doubly stochastic matrices, Amer. Math. Monthly, 1960, 67,215–221. doi: 10.1080/00029890.1960.11989480 |
[20] | H. Minc, Nonnegative Matrices, Wiley, New York, 1988. |
[21] | J. J. Moreau, Décomposition orthogonale d'un espace hilbertien selon deux cones mutuellement polaires, C. R. Acad. Sci., 1962,255,238–240. |
[22] | R. Orsi, Numericla metods for solving inverse eigenvalue problems for nonnegative matrices, SIAM Journal on Matrix Analysis and Applications, 2006, 28(1), 190–212. doi: 10.1137/050634529 |
[23] | T. Politi, A discrete approach for the inverse singular value problem in some quadratic group, Comput. Sci., 2003, 2658,121-130. |
[24] | L. Qi and J. Sun, A nonsmooth version of Newton's method, Math. Program., 1993, 58,353–367. doi: 10.1007/BF01581275 |
[25] | R. T. Rockafellar and R. J. B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998. |
[26] | C. Saunders, J. Hu, C. Christoffersen and M. Steer, Inverse singular value method for enforcing passivity in reduced-order models of distributed structures for transient and steady-state simulation, IEEE Trans Microw Theory Techn., 2011, 59,837–847. doi: 10.1109/TMTT.2011.2108311 |
[27] | R. Sinkhorn, A relationship between arbitrary positive matrices and doubly stochastic matrices, Ann. Math. Statist., 1964, 35,876–879. doi: 10.1214/aoms/1177703591 |
[28] | J. A. Tropp, I. S. Dhillon and R. W. Heath, Finite-step algorithms for constructing optimal CDMA signature sequences, IEEE Trans. Inform. Theory, 2004, 50, 2916–2921. doi: 10.1109/TIT.2004.836698 |
[29] | N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, 3rd ed., Elsevier, Amsterdam, 2007. |
[30] | M. Wei and Z. Bai, A regularized directional derivative-based Newton method for inverse singular value problems, Inverse Problems, 2012, 28(12), 5001. |
[31] | S. Wu and M. Lin, Numerical methods for solving nonnegative inverse singular value problems with prescribed structure, Inverse Problems, 2014, 30(5), 055008. doi: 10.1088/0266-5611/30/5/055008 |
[32] | T. Yao, Z. Bai and Z. Zhao, A Riemannian variant of the Fletcher-Reeves conjugate gradient method for stochastic inverse eigenvalue problems with partial eigendata, Numer. Linear Algebra Appl., 2019, 26, e2221. doi: 10.1002/nla.2221 |
[33] | Z. Zhao, X. Jin and Z. Bai, A geometric nonlinear conjugate gradient method for stochastic inverse eigenvalue problems, SIAM J. Numer. Anal., 2016, 54, 2015–2035. doi: 10.1137/140992576 |