2023 Volume 13 Issue 3
Article Contents

Meixiang Chen. ALTERNATING PROJECTION METHOD FOR SOLVING DOUBLY STOCHASTIC INVERSE SINGULAR VALUE PROBLEMS WITH PRESCRIBED ENTRIES[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1613-1631. doi: 10.11948/20220424
Citation: Meixiang Chen. ALTERNATING PROJECTION METHOD FOR SOLVING DOUBLY STOCHASTIC INVERSE SINGULAR VALUE PROBLEMS WITH PRESCRIBED ENTRIES[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1613-1631. doi: 10.11948/20220424

ALTERNATING PROJECTION METHOD FOR SOLVING DOUBLY STOCHASTIC INVERSE SINGULAR VALUE PROBLEMS WITH PRESCRIBED ENTRIES

  • Doubly stochastic inverse singular value problem with prescribed entries aims to construct a doubly stochastic matrix from the prescribed singular value and prescribed entries. In this paper, the doubly stochastic inverse singular value problem is considered as the problem of finding a point in the intersection of a compact set and a closed convex set. We present a numerical procedure which is based on an alternating projection process, for solving the problem. The method is iterative in nature. And each subproblem in the alternating projection method can be solved easily. Convergence properties of the algorithm are investigated and numerical results are presented to illustrate the effectiveness of our method.

    MSC: 65F18, 65F15, 49J52, 90C30
  • 加载中
  • [1] I. Adelia, M. Taheria and M. M. Moghadama, A recursive method for constructing Doubly Stochastic matrices and Inverse Eigenvalue problem, Linear Algebra Appl., 2018,537,318–331. doi: 10.1016/j.laa.2017.10.005

    CrossRef Google Scholar

    [2] Z. Bai, D. Chu and R. Tan, Computing the nearest doubly stochastic matrix with a prescribed entry, SIAM J. Sci. Comput., 2007, 29(2), 635–655. doi: 10.1137/050639831

    CrossRef Google Scholar

    [3] Z. Bai, X. Jin and S. W. Vong, On some inverse singular value problems with Toeplitz-related structure, Numer. Algebra Control Optim., 2017, 2,187–192.

    Google Scholar

    [4] Z. Bai, B. Morini and S. Xu, On the local convergence of an iterative approach for inverse singular value problems, J. Comput. Appl. Math., 2007,198,344–360. doi: 10.1016/j.cam.2005.06.050

    CrossRef Google Scholar

    [5] X. Bao, A. Cao and J. Zhang, Noise reduction for modal parameters estimation using algorithm of solving partially described inverse singular value problem, Smart Mater. Struct., 2016, 25, 075035. doi: 10.1088/0964-1726/25/7/075035

    CrossRef Google Scholar

    [6] H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 1996, 38,367–426. doi: 10.1137/S0036144593251710

    CrossRef Google Scholar

    [7] R. A. Brualdi, Some applications of doubly stochastic matrices, Linear Algebra Appl., 1988,107, 77–100. doi: 10.1016/0024-3795(88)90239-X

    CrossRef Google Scholar

    [8] R. H. Chan, Z. Bai and B. Morini, On the convergence rate of a Newton-like method for inverse eigenvalue and inverse singular value problems, Int. J. Appl. Math., 2003, 13, 59–69.

    Google Scholar

    [9] W. Cheney and A. Goldstein, Proximity maps for convex sets, Proc. Amer. Math. Soc., 1959, 10,448–450. doi: 10.1090/S0002-9939-1959-0105008-8

    CrossRef Google Scholar

    [10] M. Chu, A fast recursive algorithm for constructing matrices with prescribed eigenvalues and singular values, SIAM J. Numer. Anal., 2000, 37, 1004–1020. doi: 10.1137/S0036142998339301

    CrossRef Google Scholar

    [11] M. Chu and G. H. Golub, Inverse Eigenvalue Problems:Theory, Algorithms, and Applications, Oxford University Press, Oxford, UK, 2005.

    Google Scholar

    [12] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley Sons, New York, 1983.

    Google Scholar

    [13] A. Douik and B. Hassibi, Manifold optimization over the set of doubly stochastic matrices:a second-order geometry, IEEE Trans. Signal Process., 2019, 67, 5761–5774. doi: 10.1109/TSP.2019.2946024

    CrossRef Google Scholar

    [14] R. Escalante and M. Raydan, Alternating Projection Methods, Society for Industrial and Applied Mathematics, Philadelphia, 2011.

    Google Scholar

    [15] N. W. Goel and N. Richter-Dyn, Stochastic Models in Biology, Academic Press, New York, 1974.

    Google Scholar

    [16] U. Helmke and J. Moore, Optimization and Dynamical Systems, Proceedings of the IEEE, 1996.

    Google Scholar

    [17] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.

    Google Scholar

    [18] J. Malick, A dual approach to semidefinite least-squares problems, SIAM J. Matrix Anal. Appl., 2004, 26,272–284. doi: 10.1137/S0895479802413856

    CrossRef Google Scholar

    [19] M. Marcus, Some properties and applications of doubly stochastic matrices, Amer. Math. Monthly, 1960, 67,215–221. doi: 10.1080/00029890.1960.11989480

    CrossRef Google Scholar

    [20] H. Minc, Nonnegative Matrices, Wiley, New York, 1988.

    Google Scholar

    [21] J. J. Moreau, Décomposition orthogonale d'un espace hilbertien selon deux cones mutuellement polaires, C. R. Acad. Sci., 1962,255,238–240.

    Google Scholar

    [22] R. Orsi, Numericla metods for solving inverse eigenvalue problems for nonnegative matrices, SIAM Journal on Matrix Analysis and Applications, 2006, 28(1), 190–212. doi: 10.1137/050634529

    CrossRef Google Scholar

    [23] T. Politi, A discrete approach for the inverse singular value problem in some quadratic group, Comput. Sci., 2003, 2658,121-130.

    Google Scholar

    [24] L. Qi and J. Sun, A nonsmooth version of Newton's method, Math. Program., 1993, 58,353–367. doi: 10.1007/BF01581275

    CrossRef Google Scholar

    [25] R. T. Rockafellar and R. J. B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998.

    Google Scholar

    [26] C. Saunders, J. Hu, C. Christoffersen and M. Steer, Inverse singular value method for enforcing passivity in reduced-order models of distributed structures for transient and steady-state simulation, IEEE Trans Microw Theory Techn., 2011, 59,837–847. doi: 10.1109/TMTT.2011.2108311

    CrossRef Google Scholar

    [27] R. Sinkhorn, A relationship between arbitrary positive matrices and doubly stochastic matrices, Ann. Math. Statist., 1964, 35,876–879. doi: 10.1214/aoms/1177703591

    CrossRef Google Scholar

    [28] J. A. Tropp, I. S. Dhillon and R. W. Heath, Finite-step algorithms for constructing optimal CDMA signature sequences, IEEE Trans. Inform. Theory, 2004, 50, 2916–2921. doi: 10.1109/TIT.2004.836698

    CrossRef Google Scholar

    [29] N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, 3rd ed., Elsevier, Amsterdam, 2007.

    Google Scholar

    [30] M. Wei and Z. Bai, A regularized directional derivative-based Newton method for inverse singular value problems, Inverse Problems, 2012, 28(12), 5001.

    Google Scholar

    [31] S. Wu and M. Lin, Numerical methods for solving nonnegative inverse singular value problems with prescribed structure, Inverse Problems, 2014, 30(5), 055008. doi: 10.1088/0266-5611/30/5/055008

    CrossRef Google Scholar

    [32] T. Yao, Z. Bai and Z. Zhao, A Riemannian variant of the Fletcher-Reeves conjugate gradient method for stochastic inverse eigenvalue problems with partial eigendata, Numer. Linear Algebra Appl., 2019, 26, e2221. doi: 10.1002/nla.2221

    CrossRef Google Scholar

    [33] Z. Zhao, X. Jin and Z. Bai, A geometric nonlinear conjugate gradient method for stochastic inverse eigenvalue problems, SIAM J. Numer. Anal., 2016, 54, 2015–2035. doi: 10.1137/140992576

    CrossRef Google Scholar

Tables(1)

Article Metrics

Article views(1690) PDF downloads(458) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint