2023 Volume 13 Issue 3
Article Contents

Ji Li, Ping Li. THE EFFECT OF AN ADDITIVE NOISE ON SOME SLOW-FAST EQUATION NEAR A TRANSCRITICAL POINT[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1632-1649. doi: 10.11948/20220433
Citation: Ji Li, Ping Li. THE EFFECT OF AN ADDITIVE NOISE ON SOME SLOW-FAST EQUATION NEAR A TRANSCRITICAL POINT[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1632-1649. doi: 10.11948/20220433

THE EFFECT OF AN ADDITIVE NOISE ON SOME SLOW-FAST EQUATION NEAR A TRANSCRITICAL POINT

  • Author Bio: Email: liji@hust.edu.cn(J. Li)
  • Corresponding author: Email: d201780010@hust.edu.cn(P. Li)
  • Fund Project: The authors were supported by Natural Science Foundation of China (No. 12171174)
  • We consider the effect of small additive noise with intensity $ \sigma $ on trajectories of a slow-fast system with small parameter $ \varepsilon $ which admits bifurcation delay at a transcritical point. We estimate the probability that the perturbed stochastic paths stay in some tubular neighborhood of the deterministic path to show that small but not exponentially small noise destroys the bifurcation delay caused by transcritical point and obtain a noise intensity threshold value $ N(\varepsilon) $ of order $ \varepsilon^{\frac{3}{4}} $. When $ e^{-\frac{1}{\varepsilon}}\ll\sigma<N(\varepsilon) $, the paths are likely to leave the neighborhood of the corresponding determinate path before some time of order $ \sqrt{\varepsilon|log\sigma|} $. When $ \sigma>N(\varepsilon) $, the paths are likely to leave before some time of order $ \sigma^{\frac{2}{3}} $.

    MSC: 37H20, 60H10, 34E15
  • 加载中
  • [1] E. Benoît, Equations différentielles:rélation entree-sortie, Comptes Rendus des Séances de l'Académie des Sciences. Série I. Mathématique, 1981,293(5), 293–296.

    Google Scholar

    [2] E. Benoît, Dynamic Bifurcations(Luminy, 1990), Springer, Berlin, 1991.

    Google Scholar

    [3] N. Berglund and B. Gentz, Pathwise description of dynamic pitchfork bifurcations with additive noise, Probability Theory and Related Fields, 2002,122(3), 341–388. doi: 10.1007/s004400100174

    CrossRef Google Scholar

    [4] N. Berglund and B. Gentz, Noise-induced phenomena in slow-fast dynamical systems, Springer-Verlag London, London, 2006.

    Google Scholar

    [5] H. Boudjellaba and T. Sari, Dynamic transcritical bifurcations in a class of slow-fast predator-prey models, Journal of Differential Equations, 2009,246(6), 2205–2225. doi: 10.1016/j.jde.2009.01.001

    CrossRef Google Scholar

    [6] H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probability Theory and Related Fields, 1994,100(3), 365–393. doi: 10.1007/BF01193705

    CrossRef Google Scholar

    [7] A. Dembo and O. Zeitouni, Large Deviation Techniques and Applications. Second edition, Springer-Verlag, Berlin, 2010.

    Google Scholar

    [8] M. Diener, The canard unchained or how fast/slow dynamical systems bifurcate, The Mathematical Intelligencer, 1984, 6(3), 38–49. doi: 10.1007/BF03024127

    CrossRef Google Scholar

    [9] J. Eilertsen, M. A. Tyczynska and S. Schnell, Hunting $\varepsilon$:The origin and validity of quasi-steady-state reductions in enzyme kinetics, SIAM Journal on Applied Dynamical Systems, 2021, 20(4), 2450–2481. doi: 10.1137/20M135073X

    CrossRef Google Scholar

    [10] M. Engel and H. Jardón-Kojakhmetov, Extended and symmetric loss of stability for canards in planar fast-slow maps, SIAM Journal on Applied Dynamical Systems, 2020, 19(4), 2530–2566. doi: 10.1137/20M1313611

    CrossRef Google Scholar

    [11] M. Engel and C. Kuehn, Discretized fast-slow systems near transcritical singularities, Nonlinearity, 2019, 32(7), 2365–2391. doi: 10.1088/1361-6544/ab15c1

    CrossRef Google Scholar

    [12] N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana University Mathematics Journal, 1971, 21(3), 193–226. doi: 10.1512/iumj.1972.21.21017

    CrossRef Google Scholar

    [13] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, Journal of Differential Equations, 1979, 31(1), 53–98. doi: 10.1016/0022-0396(79)90152-9

    CrossRef Google Scholar

    [14] M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems. Third edition, Springer, Heidelberg, 2012.

    Google Scholar

    [15] X. Han and H. N. Najm, Dynamical structures in stochastic chemical reaction systems, SIAM Journal on Applied Dynamical Systems, 2014, 13(3), 1328–1351. doi: 10.1137/140957482

    CrossRef Google Scholar

    [16] T. H. Hsu, On bifurcation delay:An alternative approach using geometric singular perturbation theory, Journal of Differential Equations, 2017,262(3), 1617–1630. doi: 10.1016/j.jde.2016.10.022

    CrossRef Google Scholar

    [17] T. Hurth and C. Kuehn, Random switching near bifurcations, Stochastics and Dynamics, 2020, 20(02), 2050008, 28 pp.

    Google Scholar

    [18] H. Jardón-Kojakhmetov, C. Kuehn, A. Pugliese and M. Sensi, A geometric analysis of the SIR, SIRS and SIRWS epidemiological models, Nonlinear Analysis:Real World Applications, 2021, 58, 103220, 27 pp. doi: 10.1016/j.nonrwa.2020.103220

    CrossRef Google Scholar

    [19] M. Krupa and P. Szmolyan, Extending slow manifolds near transcritical and pitchfork singularities, Nonlinearity, 2001, 14(6), 1473–1491. doi: 10.1088/0951-7715/14/6/304

    CrossRef Google Scholar

    [20] C. Kuehn, A mathematical framework for critical transitions: bifurcations, fast-slow systems and stochastic dynamics, Physica D: Nonlinear Phenomena, 2011,240(12), 1020–1035. doi: 10.1016/j.physd.2011.02.012

    CrossRef Google Scholar

    [21] C. Kuehn, A mathematical framework for critical transitions:normal forms, variance and applications, Journal of Nonlinear Science, 2013, 23(3), 457–510. doi: 10.1007/s00332-012-9158-x

    CrossRef Google Scholar

    [22] C. Kuehn, Normal hyperbolicity and unbounded critical manifolds, Nonlinearity, 2014, 27(6), 1351–1366. doi: 10.1088/0951-7715/27/6/1351

    CrossRef Google Scholar

    [23] C. Kuehn, Multiple Time Scale Dynamics, Springer, Cham., 2015.

    Google Scholar

    [24] C. Kuehn, N. Berglund, C. Bick, et~al., A general view on double limits in differential equations, Physica D:Nonlinear Phenomena, 2022,431, 133105, 26 pp.

    Google Scholar

    [25] R. Kuske, Probability densities for noisy delay bifurcations, Journal of Statistical Physics, 1999, 96(3–4), 797–816.

    Google Scholar

    [26] J. Li, K. Lu and P. W. Bates, Invariant foliations for random dynamical systems, Discrete and Continuous Dynamical Systems, 2014, 34(9), 3639–3666. doi: 10.3934/dcds.2014.34.3639

    CrossRef Google Scholar

    [27] J. Li, K. Lu and P. W. Bates, Geometric singular perturbation theory with real noise, Journal of Differential Equations, 2015,259(10), 5137–5167. doi: 10.1016/j.jde.2015.06.023

    CrossRef Google Scholar

    [28] W. Liu, Exchange lemmas for singular perturbation problems with certain turning points, Journal of Differential Equations, 2000,167(1), 134–180. doi: 10.1006/jdeq.2000.3778

    CrossRef Google Scholar

    [29] H. Lu, M. Ni and L. Wu, Extending slow manifold near generic transcritical canard point, Acta Mathematicae Applicatae Sinica, English Series, 2017, 33(4), 989–1000. doi: 10.1007/s10255-017-0713-y

    CrossRef Google Scholar

    [30] P. D. Maesschalck and S. Schecter, The entry-exit function and geometric singular perturbation theory, Journal of Differential Equations, 2016,260(8), 6697–6715. doi: 10.1016/j.jde.2016.01.008

    CrossRef Google Scholar

    [31] E. F. Mishchenko, Y. S. Kolesov, A. Y. Kolesov and N. K. Rozov, Asymptotic methods in singularly perturbed systems, Consultants Bureau, New York, 1994.

    Google Scholar

    [32] S. M. O'Regan and J. M. Drake, Theory of early warning signals of disease emergenceand leading indicators of elimination, Theoretical Ecology, 2013, 6(3), 333–357. doi: 10.1007/s12080-013-0185-5

    CrossRef Google Scholar

    [33] S. Schecter, Exchange lemmas. 1. deng's lemma, Journal of Differential Equations, 2008,245(2), 392–410. doi: 10.1016/j.jde.2007.08.011

    CrossRef Google Scholar

    [34] M. Scheffer, J. Bascompte, W. Brock, et~al., Early-warning signals for critical transitions, Nature, 2009,461(7260), 53–59. doi: 10.1038/nature08227

    CrossRef Google Scholar

    [35] A. Vidal and J. P. Françoise, Canard cycles in global dynamics, International Journal of Bifurcation and Chaos, 2012, 22(2), 1250026, 13.

    Google Scholar

    [36] C. Wang and X. Zhang, Stability loss delay and smoothness of the return map in slow-fast systems, SIAM Journalon Applied Dynamical Systems, 2018, 17(1), 788–822. doi: 10.1137/17M1130010

    CrossRef Google Scholar

    [37] A. Widder and C. Kuehn, Heterogeneous population dynamics and scaling laws near epidemic outbreaks, Mathematical Biosciences and Engineering, 2016, 13(5), 1093–1118. doi: 10.3934/mbe.2016032

    CrossRef Google Scholar

    [38] L. Zhong and J. Shen, Degenerate transcritical bifurcation point can be an attractor:A case study in a slow-fast modified Leslie-Gower model, Qualitative Theory of Dynamical Systems, 2022, 21(3), 76, 11 pp.

    Google Scholar

Figures(2)

Article Metrics

Article views(1934) PDF downloads(385) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint