Citation: | Donal O'Regan. THE STUDY OF EQUILIBRIA FOR GENERALIZED GAMES IN HAUSDORFF TOPOLOGICAL VECTOR SPACES[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2153-2161. doi: 10.11948/20220398 |
Recent fixed point theory of the author is used to establish equilibria to multiperson games for majorized coercive or compact type maps defined on Hausdorff topological vector spaces.
[1] | M. U. Ali and A. Pitea, Existence theorem for integral inclusions by a fixed point theorem for multivalued implicit-type contractive maps, Nonlinear Analysis: Modelling and Control, 2021, 26, 334-348. doi: 10.15388/namc.2021.26.22357 |
[2] | M. Balaj, Existence results for quasi-equilibrium problems under a weaker equilibrium condition, Operation Research Letters, 2021, 49, 333-337. doi: 10.1016/j.orl.2021.02.005 |
[3] | X. Ding and K. Tan, A minimax inequality with applications to existence of equilibrium point and fixed point theorems, Colloquium Math., 1992, 63, 233-247. doi: 10.4064/cm-63-2-233-247 |
[4] | J. Dugundji, Topology, Allyn and Bacon, Boston, 1966. |
[5] | R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989. |
[6] | C. D. Horvath, Contractibility and generalized convexity, Jour. Math. Anal. Appl., 1991, 156, 341-357. doi: 10.1016/0022-247X(91)90402-L |
[7] | A. Latif, R. F. Al Subaie and M. O. Alansari, Fixed points of generalized multivalued contractive mappings in metric type spaces, Journal of Nonlinear and Variational Analysis, 2022, 6, 123-138. |
[8] | L. J. Lim, S. Park and Z. Yu, Remarks on fixed points, maximal elements and equilibria of generalized games, Jour. Math. Anal. Appl., 1999, 233, 581-596. doi: 10.1006/jmaa.1999.6311 |
[9] | D. O'Regan, Collectively fixed point theory in the compact and coercive cases, Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Mathematica, 2022, 30(2), 193-207. |
[10] | D. O'Regan, Maximal elements and equilibria for generalized majorized maps, Nonlinear Analysis: Modelling and Control, 2023, 28, 116-132. |
[11] | D. O'Regan, Existence of equilibria for $N$-person games, Fixed Point Theory, to appear. |
[12] | A. Petrusel and G. Petrusel, Common fixed point theory for a pair of multivalued operators, Carpathian Jour. Math., 2022, 38, 707-714. doi: 10.37193/CJM.2022.03.15 |
[13] | I. A. Rus, Sets with structure, mappings and fixed point property: Fixed point structures, Fixed Point Theory, 2022, 23, 689-706. doi: 10.24193/fpt-ro.2022.2.16 |
[14] | N. C. Yanelis and N. D. Prabhakar, Existence of maximal elements and equlibria in linear topological spaces, J. Math. Econom., 1983, 12, 233-245. doi: 10.1016/0304-4068(83)90041-1 |
[15] | X. Yuan and E. Tarafdar, Maximal elements and equilibria of generalized games for condensing correspondences, Jour. Math. Anal. Appl., 1996, 203, 13-30. doi: 10.1006/jmaa.1996.0364 |
[16] | X. Yuan and E. Tarafdar, Existence of equilibria of generalized games without compactness and paracompactness, Nonlinear Analysis, 1996, 26, 893-902. doi: 10.1016/0362-546X(94)00329-9 |
[17] | X. Yuan, The study of equilibria for abstract economies in topological vector spaces-a unified approach, Nonlinear Analysis, 1999, 37, 409-430. doi: 10.1016/S0362-546X(98)00055-8 |