2023 Volume 13 Issue 4
Article Contents

Meng Wang, Yafei Zhao, Chen Zhang, Jie Lou. THE WITHIN-HOST VIRAL KINETICS OF SARS-COV-2[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2121-2152. doi: 10.11948/20220389
Citation: Meng Wang, Yafei Zhao, Chen Zhang, Jie Lou. THE WITHIN-HOST VIRAL KINETICS OF SARS-COV-2[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2121-2152. doi: 10.11948/20220389

THE WITHIN-HOST VIRAL KINETICS OF SARS-COV-2

  • Understanding the dynamics of SARS-COV-2 infection in vivo is crucial for exploring more effective treatments. This paper presents a series of dynamic models of viral infection in host. We use affine invariant set Monte Carlo algorithm to achieve parameter fitting and model selection, and study the structural identifiability of these models to determine if the clinical data could specify the model parameters. Then we analyze the actual identifiability and numerical simulation of the selected optimal model. Research shows that all models are structurally identifiable, and data noise has little effect on the actual identifiability of key parameters. Through numerical simulation we found the key factors that may cause cytokine storms. In addition, we also obtain some qualitative conclusions of the model, including the infection threshold, the stability of the equilibrium state and the periodic solution. Studies have found that viral load may exhibit complex periodic motions in some cases, which may provide new evidence to handle repeated reactivations among new corona virus infections.

    MSC: 92D30, 92D40
  • 加载中
  • [1] L. Allen, An Introduction to Stochastic Processes with Applications to Biology, CRC Press, 2010.

    Google Scholar

    [2] H. Akaike, Information theory and an extension of the maximum likelihood principle, in Selected papers of hirotugu akaike, Springer, 1998. DOI: 10.1007/978-1-4612-1694-0_15.

    Google Scholar

    [3] K. Burnham and D. Anderson, Multimodel inference: Understad ing AIC and BIC in Model Selection, 2004, 33(2), 261-304.

    Google Scholar

    [4] G. Bellu, M. P. Saccomani, S. Audoly, et al., DAISY: A new software tool to test global identifiability of biological and physiological systems, Computer Methods and Programs in Biomedicine, 2007, 88(1), 52-61. doi: 10.1016/j.cmpb.2007.07.002

    CrossRef Google Scholar

    [5] O. T. Chis, J. R. Banga and E. Balsa-Canto, Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods, Plos One, 2011, 6(11), e27755-e27755. doi: 10.1371/journal.pone.0027755

    CrossRef Google Scholar

    [6] C. Cobelli and J. J. Distefano, Parameter and Structural Identifiability Concepts and Ambiguities -a Critical-Review and Analysis, The American journal of physiology, 1980, 239(1), R7-24.

    Google Scholar

    [7] T. Chen, J. Rui, Q. Wang, et al., A mathematical model for simulating the phase-based transmissibility of a novel coronavirus, Infectious Diseases of Poverty, 2020, 9, 24-24. doi: 10.1186/s40249-020-00640-3

    CrossRef Google Scholar

    [8] M. Chen, Q. Shao and J. G. Ibrahim, Monte Carlo Methods in Bayesian Computation, Springer, 2000. DOI: 10.1007/978-1-4612-1276-8.

    CrossRef Google Scholar

    [9] K. Ejima, K. S. Kim, Y. Ito, et al., Inferring Timing of Infection Using Within-host SARS-CoV-2 Infection Dynamics Model: Are "Imported Cases" Truly Imported? 2020. DOI: 2020,10.1101/2020.03.30.20040519.

    Google Scholar

    [10] M. C. Eisenberg, S. L. Robertson and J. H. Tien, Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease, Journal of Theoretical Biology, 2013, 324(Complete), 84-102.

    Google Scholar

    [11] N. D. Evans, L. J. White, M. J. Chapman, et al., The structural identifiability of the susceptible infected recovered model with seasonal forcing, Mathematical Biosciences, 2005, 194(2), 175-197. doi: 10.1016/j.mbs.2004.10.011

    CrossRef Google Scholar

    [12] J. Goodman and J. Weare, Ensemble samplers with affine invariance, Communications in Applied Mathematics and Computational Science, 2010, 5(1), 65-80. doi: 10.2140/camcos.2010.5.65

    CrossRef Google Scholar

    [13] J. K. Ghosh, Introduction to Applied Bayesian Statistics and Estimation for Social Scientists by Scott M. Lynch, International Statal Review, 2010, 76(2), 311-312.

    Google Scholar

    [14] M. Golubitsky and P. H. Rabinowitz, Abzweigung einer periodischen Lösung von einer stationaeren Lösung eines Differentialsystems, Akad. Wiss. (Leipzig), 1942, 94(1), 3-22.

    Google Scholar

    [15] L. F. García, Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Frontiers in Immunology, 2020, 11, 1441-1441. doi: 10.3389/fimmu.2020.01441

    CrossRef Google Scholar

    [16] C. Huang, Y. Wang, X. Li, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, The Lancet, 2020, 395(10223), 496-496. doi: 10.1016/S0140-6736(20)30323-8

    CrossRef Google Scholar

    [17] K. Hattaf and N. Yousfi, Dynamics of SARS-CoV-2 infection model with two modes of transmission and immune response, Mathematical Biosciences and Engineering, 2020, 17(5), 5326-5340. doi: 10.3934/mbe.2020288

    CrossRef Google Scholar

    [18] A. J. Kucharski, T. W. Russel, C. Diamond, et al., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, The Lancet Infectious Diseases, 2020, 20(5), 553-558. doi: 10.1016/S1473-3099(20)30144-4

    CrossRef Google Scholar

    [19] K. S. Kim, K. Ejima, Y. Ito, et al., Modelling SARS-CoV-2 Dynamics: Implications for Therapy, Cold Spring Harbor Laboratory Press, 2020. DOI: 10.1101/2020.03.23.20040493.

    CrossRef Google Scholar

    [20] J. Y. Kim, J. H. Ko, Y. Kim, et al., Viral load kinetics of SARS-CoV-2 infection in first two patients in Korea, Journal of Korean Medical Science, 2020, 35(7), e86-e86. doi: 10.3346/jkms.2020.35.e86

    CrossRef Google Scholar

    [21] T. Liu, J. Hu, M. Kang, et al., Transmission Dynamics of 2019 Novel Coronavirus (2019-nCoV), Social Science Electronic Publishing, 2020. DOI: 10.1101/2020.01.25.919787.

    CrossRef Google Scholar

    [22] C. Li, J. Xu, J. Liu, et al., The within-host viral kinetics of SARS-CoV-2, Mathematical Biosciences and Engineering, 2020, 17(4), 2853-2861. doi: 10.3934/mbe.2020159

    CrossRef Google Scholar

    [23] R. N. Leander, Y. Wu, W. Ding, et al., A model of the innate immune response to SARS-CoV-2 in the alveolar epithelium, Royal Society open science, 8(8), 210090-210090.

    Google Scholar

    [24] L. Ljung and T. Glad, Testing Global Identifiability for Arbitrary Model Parameterizations, IFAC Proceedings Volumes, 1991, 24(3), 1085-1090. doi: 10.1016/S1474-6670(17)52494-5

    CrossRef Google Scholar

    [25] C. Lucas, P. Wong, J. Klein, et al., Longitudinal analyses reveal immunological misfiring in severe COVID-19, Nature, 2020, 584(7821), 463-469. doi: 10.1038/s41586-020-2588-y

    CrossRef Google Scholar

    [26] H. Miao, X. Xia, A. S. Perelson, et al., On Identifiability Of Nonlinear Ode Models And Applications In Viral Dynamics, SIAM Review, 2011, 53(1), 3-39. doi: 10.1137/090757009

    CrossRef Google Scholar

    [27] V. J. Munster, F. Feldmann, B. N. Williamson, et al., Respiratory disease in rhesus macaques inoculated with SARS-CoV-2, Nature, 2020, 585(7824), 268-272. doi: 10.1038/s41586-020-2324-7

    CrossRef Google Scholar

    [28] H. Miao, X. Xia, A. S. Perelson, et al., On Identifiability Of Nonlinear Ode Models And Applications In Viral Dynamics, SIAM Review, 2011, 53(1), 3-39. doi: 10.1137/090757009

    CrossRef Google Scholar

    [29] A. Mi, B, Si, A. As, et al., AI- modelling of molecular identification and feminization of wolbachia infected Aedes aegypti, Progress in Biophysics and Molecular Biology, 2020, 150, 104-111. doi: 10.1016/j.pbiomolbio.2019.07.001

    CrossRef Google Scholar

    [30] Y. Pan, D. Zhang, P. Yang, et al., Viral load of SARS-CoV-2 in clinical samples, The Lancet Infectious Diseases, 2020, 20(4), 411-412. doi: 10.1016/S1473-3099(20)30113-4

    CrossRef Google Scholar

    [31] E. Prompetchara, C. Ketloy and T. Palaga, Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic, Asian Pac J Allergy Immunol, 2020, 38(1), 1-9.

    Google Scholar

    [32] R. F. Reis, A. B. Pigozzo, C. R. B. Bonin, et al., A Validated Mathematical Model of the Cytokine Release Syndrome in Severe COVID-19, Frontiers in Molecular Biosciences, 2021, 8, 639423-639423. doi: 10.3389/fmolb.2021.639423

    CrossRef Google Scholar

    [33] Y. Ren, T. Shu, D. Wu, et al., The ORF3a protein of SARS-CoV-2 induces apoptosis in cells, Cellular & molecular immunology, 2020, 17(8), 1-3.

    Google Scholar

    [34] W. C. Roda, Bayesian inference for dynamical systems, Infectious Disease Modelling, 2020, 5, 221-232. doi: 10.1016/j.idm.2019.12.007

    CrossRef Google Scholar

    [35] W. C. Roda, M. B. Varughese, D. Han, et al., Why Is It Difficult to Accurately Predict the COVID-19 Epidemic? Infectious Disease Modelling, 2020, 5, 271-281. doi: 10.1016/j.idm.2020.03.001

    CrossRef Google Scholar

    [36] J. Shang, Y. Wan, C. Luo, et al., Cell entry mechanisms of SARS-CoV-2, Proceedings of the National Academy of Sciences, 2020, 117(21), 11727-11734. doi: 10.1073/pnas.2003138117

    CrossRef Google Scholar

    [37] M. Shen, Z. Peng, Y. Xiao, et al., Modelling the epidemic trend of the 2019 novel coronavirus outbreak in China, 2020. DOI: 10.1101/2020.01.23.916726.

    Google Scholar

    [38] A. Sw, P. Yang, C. Qwb, et al., Modeling the viral dynamics of SARS-CoV-2 infection - ScienceDirect, Mathematical Biosciences, 2020, 328, 108438-108438. doi: 10.1016/j.mbs.2020.108438

    CrossRef Google Scholar

    [39] S. Sahoo, K. Hari, S. Jhunjhunwala, et al., Mechanistic modeling of the SARS-CoV-2 and immune system interplay unravels design principles for diverse clinicopathological outcomes, Public Health Intervention for the COVID-19, 2022. DOI: 10.1142/9789811249723_0002.

    Google Scholar

    [40] L. Sherin, S. Farwa, A. Sohail, et al., Cancer drug therapy and stochastic modeling of "nano-motors", International Journal of Nanomedicine, 2018, 13, 6429-6440. doi: 10.2147/IJN.S168780

    CrossRef Google Scholar

    [41] G. E. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, 1978, 6(2), 461-464.

    Google Scholar

    [42] M. Z. Tay, C. M. Poh, L. Rénia, et al., The trinity of COVID-19: immunity, inflammation and intervention, Nature reviews. Immunology, 2020, 20(6), 1-12.

    Google Scholar

    [43] T. Takahashi, M. K. Ellingson, P. Wong, et al., Sex differences in immune responses that underlie COVID-19 disease outcomes, Nature, 2020, 588(7837), 315-320. doi: 10.1038/s41586-020-2700-3

    CrossRef Google Scholar

    [44] S. A. Vardhana and J. D. Wolchok, The many faces of the anti-COVID immune response, Journal of Experimental Medicine, 2020, 217(6), e20200678-e20200678. doi: 10.1084/jem.20200678

    CrossRef Google Scholar

    [45] X. Wang, W. Xu, G. Hu, et al., SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion, Cellular & molecular immunology, 2020, 17(8), 894-894.

    Google Scholar

    [46] J. Wu, K. Leung, M. Bushman, et al., Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China, Nature medicine, 2020, 26(4), 1149-1150.

    Google Scholar

    [47] A. Wu, Y. Peng, B. Huang, et al., Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China, Cell Host & Microbe, 2020, 27(3), 325-328.

    Google Scholar

    [48] C. Wang, W. Li, D. Drabek, et al., A human monoclonal antibody blocking SARS-CoV-2 infection, Nat. Commun., 2020, 11(1), 2251-2251. doi: 10.1038/s41467-020-16256-y

    CrossRef Google Scholar

    [49] X. Zhang, Y. Tan, Y. Ling, et al., Viral and host factors related to the clinical outcome of COVID-19, Nature, 2020, 583, 437-440. doi: 10.1038/s41586-020-2355-0

    CrossRef Google Scholar

    [50] P. Zhou, X. Yang, X. Wang, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 2020, 579(7798), 270-273. doi: 10.1038/s41586-020-2012-7

    CrossRef Google Scholar

Figures(6)  /  Tables(9)

Article Metrics

Article views(1895) PDF downloads(319) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint