Citation: | Meng Wang, Yafei Zhao, Chen Zhang, Jie Lou. THE WITHIN-HOST VIRAL KINETICS OF SARS-COV-2[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2121-2152. doi: 10.11948/20220389 |
Understanding the dynamics of SARS-COV-2 infection in vivo is crucial for exploring more effective treatments. This paper presents a series of dynamic models of viral infection in host. We use affine invariant set Monte Carlo algorithm to achieve parameter fitting and model selection, and study the structural identifiability of these models to determine if the clinical data could specify the model parameters. Then we analyze the actual identifiability and numerical simulation of the selected optimal model. Research shows that all models are structurally identifiable, and data noise has little effect on the actual identifiability of key parameters. Through numerical simulation we found the key factors that may cause cytokine storms. In addition, we also obtain some qualitative conclusions of the model, including the infection threshold, the stability of the equilibrium state and the periodic solution. Studies have found that viral load may exhibit complex periodic motions in some cases, which may provide new evidence to handle repeated reactivations among new corona virus infections.
[1] | L. Allen, An Introduction to Stochastic Processes with Applications to Biology, CRC Press, 2010. |
[2] |
H. Akaike, Information theory and an extension of the maximum likelihood principle, in Selected papers of hirotugu akaike, Springer, 1998. DOI: |
[3] | K. Burnham and D. Anderson, Multimodel inference: Understad ing AIC and BIC in Model Selection, 2004, 33(2), 261-304. |
[4] | G. Bellu, M. P. Saccomani, S. Audoly, et al., DAISY: A new software tool to test global identifiability of biological and physiological systems, Computer Methods and Programs in Biomedicine, 2007, 88(1), 52-61. doi: 10.1016/j.cmpb.2007.07.002 |
[5] | O. T. Chis, J. R. Banga and E. Balsa-Canto, Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods, Plos One, 2011, 6(11), e27755-e27755. doi: 10.1371/journal.pone.0027755 |
[6] | C. Cobelli and J. J. Distefano, Parameter and Structural Identifiability Concepts and Ambiguities -a Critical-Review and Analysis, The American journal of physiology, 1980, 239(1), R7-24. |
[7] | T. Chen, J. Rui, Q. Wang, et al., A mathematical model for simulating the phase-based transmissibility of a novel coronavirus, Infectious Diseases of Poverty, 2020, 9, 24-24. doi: 10.1186/s40249-020-00640-3 |
[8] | M. Chen, Q. Shao and J. G. Ibrahim, Monte Carlo Methods in Bayesian Computation, Springer, 2000. DOI: 10.1007/978-1-4612-1276-8. |
[9] |
K. Ejima, K. S. Kim, Y. Ito, et al., Inferring Timing of Infection Using Within-host SARS-CoV-2 Infection Dynamics Model: Are "Imported Cases" Truly Imported? 2020. DOI: |
[10] | M. C. Eisenberg, S. L. Robertson and J. H. Tien, Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease, Journal of Theoretical Biology, 2013, 324(Complete), 84-102. |
[11] | N. D. Evans, L. J. White, M. J. Chapman, et al., The structural identifiability of the susceptible infected recovered model with seasonal forcing, Mathematical Biosciences, 2005, 194(2), 175-197. doi: 10.1016/j.mbs.2004.10.011 |
[12] | J. Goodman and J. Weare, Ensemble samplers with affine invariance, Communications in Applied Mathematics and Computational Science, 2010, 5(1), 65-80. doi: 10.2140/camcos.2010.5.65 |
[13] | J. K. Ghosh, Introduction to Applied Bayesian Statistics and Estimation for Social Scientists by Scott M. Lynch, International Statal Review, 2010, 76(2), 311-312. |
[14] | M. Golubitsky and P. H. Rabinowitz, Abzweigung einer periodischen Lösung von einer stationaeren Lösung eines Differentialsystems, Akad. Wiss. (Leipzig), 1942, 94(1), 3-22. |
[15] | L. F. García, Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Frontiers in Immunology, 2020, 11, 1441-1441. doi: 10.3389/fimmu.2020.01441 |
[16] | C. Huang, Y. Wang, X. Li, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, The Lancet, 2020, 395(10223), 496-496. doi: 10.1016/S0140-6736(20)30323-8 |
[17] | K. Hattaf and N. Yousfi, Dynamics of SARS-CoV-2 infection model with two modes of transmission and immune response, Mathematical Biosciences and Engineering, 2020, 17(5), 5326-5340. doi: 10.3934/mbe.2020288 |
[18] | A. J. Kucharski, T. W. Russel, C. Diamond, et al., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, The Lancet Infectious Diseases, 2020, 20(5), 553-558. doi: 10.1016/S1473-3099(20)30144-4 |
[19] | K. S. Kim, K. Ejima, Y. Ito, et al., Modelling SARS-CoV-2 Dynamics: Implications for Therapy, Cold Spring Harbor Laboratory Press, 2020. DOI: 10.1101/2020.03.23.20040493. |
[20] | J. Y. Kim, J. H. Ko, Y. Kim, et al., Viral load kinetics of SARS-CoV-2 infection in first two patients in Korea, Journal of Korean Medical Science, 2020, 35(7), e86-e86. doi: 10.3346/jkms.2020.35.e86 |
[21] | T. Liu, J. Hu, M. Kang, et al., Transmission Dynamics of 2019 Novel Coronavirus (2019-nCoV), Social Science Electronic Publishing, 2020. DOI: 10.1101/2020.01.25.919787. |
[22] | C. Li, J. Xu, J. Liu, et al., The within-host viral kinetics of SARS-CoV-2, Mathematical Biosciences and Engineering, 2020, 17(4), 2853-2861. doi: 10.3934/mbe.2020159 |
[23] | R. N. Leander, Y. Wu, W. Ding, et al., A model of the innate immune response to SARS-CoV-2 in the alveolar epithelium, Royal Society open science, 8(8), 210090-210090. |
[24] | L. Ljung and T. Glad, Testing Global Identifiability for Arbitrary Model Parameterizations, IFAC Proceedings Volumes, 1991, 24(3), 1085-1090. doi: 10.1016/S1474-6670(17)52494-5 |
[25] | C. Lucas, P. Wong, J. Klein, et al., Longitudinal analyses reveal immunological misfiring in severe COVID-19, Nature, 2020, 584(7821), 463-469. doi: 10.1038/s41586-020-2588-y |
[26] | H. Miao, X. Xia, A. S. Perelson, et al., On Identifiability Of Nonlinear Ode Models And Applications In Viral Dynamics, SIAM Review, 2011, 53(1), 3-39. doi: 10.1137/090757009 |
[27] | V. J. Munster, F. Feldmann, B. N. Williamson, et al., Respiratory disease in rhesus macaques inoculated with SARS-CoV-2, Nature, 2020, 585(7824), 268-272. doi: 10.1038/s41586-020-2324-7 |
[28] | H. Miao, X. Xia, A. S. Perelson, et al., On Identifiability Of Nonlinear Ode Models And Applications In Viral Dynamics, SIAM Review, 2011, 53(1), 3-39. doi: 10.1137/090757009 |
[29] | A. Mi, B, Si, A. As, et al., AI- modelling of molecular identification and feminization of wolbachia infected Aedes aegypti, Progress in Biophysics and Molecular Biology, 2020, 150, 104-111. doi: 10.1016/j.pbiomolbio.2019.07.001 |
[30] | Y. Pan, D. Zhang, P. Yang, et al., Viral load of SARS-CoV-2 in clinical samples, The Lancet Infectious Diseases, 2020, 20(4), 411-412. doi: 10.1016/S1473-3099(20)30113-4 |
[31] | E. Prompetchara, C. Ketloy and T. Palaga, Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic, Asian Pac J Allergy Immunol, 2020, 38(1), 1-9. |
[32] | R. F. Reis, A. B. Pigozzo, C. R. B. Bonin, et al., A Validated Mathematical Model of the Cytokine Release Syndrome in Severe COVID-19, Frontiers in Molecular Biosciences, 2021, 8, 639423-639423. doi: 10.3389/fmolb.2021.639423 |
[33] | Y. Ren, T. Shu, D. Wu, et al., The ORF3a protein of SARS-CoV-2 induces apoptosis in cells, Cellular & molecular immunology, 2020, 17(8), 1-3. |
[34] | W. C. Roda, Bayesian inference for dynamical systems, Infectious Disease Modelling, 2020, 5, 221-232. doi: 10.1016/j.idm.2019.12.007 |
[35] | W. C. Roda, M. B. Varughese, D. Han, et al., Why Is It Difficult to Accurately Predict the COVID-19 Epidemic? Infectious Disease Modelling, 2020, 5, 271-281. doi: 10.1016/j.idm.2020.03.001 |
[36] | J. Shang, Y. Wan, C. Luo, et al., Cell entry mechanisms of SARS-CoV-2, Proceedings of the National Academy of Sciences, 2020, 117(21), 11727-11734. doi: 10.1073/pnas.2003138117 |
[37] |
M. Shen, Z. Peng, Y. Xiao, et al., Modelling the epidemic trend of the 2019 novel coronavirus outbreak in China, 2020. DOI: |
[38] | A. Sw, P. Yang, C. Qwb, et al., Modeling the viral dynamics of SARS-CoV-2 infection - ScienceDirect, Mathematical Biosciences, 2020, 328, 108438-108438. doi: 10.1016/j.mbs.2020.108438 |
[39] |
S. Sahoo, K. Hari, S. Jhunjhunwala, et al., Mechanistic modeling of the SARS-CoV-2 and immune system interplay unravels design principles for diverse clinicopathological outcomes, Public Health Intervention for the COVID-19, 2022. DOI: |
[40] | L. Sherin, S. Farwa, A. Sohail, et al., Cancer drug therapy and stochastic modeling of "nano-motors", International Journal of Nanomedicine, 2018, 13, 6429-6440. doi: 10.2147/IJN.S168780 |
[41] | G. E. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, 1978, 6(2), 461-464. |
[42] | M. Z. Tay, C. M. Poh, L. Rénia, et al., The trinity of COVID-19: immunity, inflammation and intervention, Nature reviews. Immunology, 2020, 20(6), 1-12. |
[43] | T. Takahashi, M. K. Ellingson, P. Wong, et al., Sex differences in immune responses that underlie COVID-19 disease outcomes, Nature, 2020, 588(7837), 315-320. doi: 10.1038/s41586-020-2700-3 |
[44] | S. A. Vardhana and J. D. Wolchok, The many faces of the anti-COVID immune response, Journal of Experimental Medicine, 2020, 217(6), e20200678-e20200678. doi: 10.1084/jem.20200678 |
[45] | X. Wang, W. Xu, G. Hu, et al., SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion, Cellular & molecular immunology, 2020, 17(8), 894-894. |
[46] | J. Wu, K. Leung, M. Bushman, et al., Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China, Nature medicine, 2020, 26(4), 1149-1150. |
[47] | A. Wu, Y. Peng, B. Huang, et al., Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China, Cell Host & Microbe, 2020, 27(3), 325-328. |
[48] | C. Wang, W. Li, D. Drabek, et al., A human monoclonal antibody blocking SARS-CoV-2 infection, Nat. Commun., 2020, 11(1), 2251-2251. doi: 10.1038/s41467-020-16256-y |
[49] | X. Zhang, Y. Tan, Y. Ling, et al., Viral and host factors related to the clinical outcome of COVID-19, Nature, 2020, 583, 437-440. doi: 10.1038/s41586-020-2355-0 |
[50] | P. Zhou, X. Yang, X. Wang, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 2020, 579(7798), 270-273. doi: 10.1038/s41586-020-2012-7 |
Diagram of the dynamics of SARS-COV-2 infection. Healthy type Ⅱ alveolar cells are produced at a constant rate of
Fitting results. (a) Fitting curve of the T lymphocyte and its 95% confidence interval. (b) Fitting curve of the COVID-19 virus load and its 95% confidence interval.
Scatterplots showing parameter estimates for 100 simulated data sets use Affine Invariant Ensemble Markov chain Monte Carlo algorithm for Poisson noise. Beat-fit parameters (indicated by red stars) are as given in Table 5. Note that the parameters
The curve of viral load under different combinations of parameters. The black dots correspond to the peak of curves.
The figure on the left shows the number of cells infected by the virus under different combinations of parameters. The figure on the right shows the number of T lymphocytes under different Hill coefficients.
When