2024 Volume 14 Issue 2
Article Contents

Xiaojie He, Zhijun Liu, Qinglong Wang. PARTIAL PERMANENCE AND STATIONARY DISTRIBUTION OF A DELAYED STOCHASTIC FACULTATIVE MUTUALISM MODEL WITH FEEDBACK CONTROLS[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 657-681. doi: 10.11948/20220405
Citation: Xiaojie He, Zhijun Liu, Qinglong Wang. PARTIAL PERMANENCE AND STATIONARY DISTRIBUTION OF A DELAYED STOCHASTIC FACULTATIVE MUTUALISM MODEL WITH FEEDBACK CONTROLS[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 657-681. doi: 10.11948/20220405

PARTIAL PERMANENCE AND STATIONARY DISTRIBUTION OF A DELAYED STOCHASTIC FACULTATIVE MUTUALISM MODEL WITH FEEDBACK CONTROLS

  • This paper characterizes a facultative mutualism model with feedback controls by using delayed stochastic differential equations, in which each interspecific mutualism term contains saturation effects and distributed delays with strong kernels. Firstly, we transform the stochastic facultative mutualism model with strong kernels into an equivalent eight-dimensional stochastic model by a linear chain technique. After that, sufficient criteria for partial permanence of both species and the existence of a unique stationary distribution are established, respectively. Finally, illustrative examples and corresponding numerical simulations are carried out to support our theoretical results.

    MSC: 92D25, 60H10
  • 加载中
  • [1] M. A. Aizerman and F. R. Gantmacher, Absolute Stability of Regulator Systems (translated from Russian), Holden Day, San Francisco, 1964.

    Google Scholar

    [2] D. O. Alvarenga and K. Rousk, Unraveling host-microbe interactions and ecosystem functions in moss-bacteria symbioses, J. Exp. Bot., 2022, 73(13), 4473–4486. doi: 10.1093/jxb/erac091

    CrossRef Google Scholar

    [3] A. Bahar and R. X. Mao, Stochastic delay Lotka-Volterra model, J. Math. Anal. Appl., 2004, 292(2), 364–380. doi: 10.1016/j.jmaa.2003.12.004

    CrossRef Google Scholar

    [4] I. Barhalat, Systems d'equations differential d'oscillations nonlinearies, Rev. Roum. Math. Pures Appl., 1959, 4, 267–270.

    Google Scholar

    [5] A. A. Carrell, D. Veličković, T. J. Lawrence, et al., Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism, ISME J., 2022, 16(4), 1074–1085. doi: 10.1038/s41396-021-01136-0

    CrossRef Google Scholar

    [6] F. D. Chen, X. Y. Liao and Z. K. Huang, The dynamic behavior of N-species cooperation system with continuous time delays and feedback controls, Appl. Math. Comput., 2006, 181(2), 803–815.

    Google Scholar

    [7] F. D. Chen, J. H. Yang, L. J. Chen and X. D. Xie, On a mutualism model with feedback controls, Appl. Math. Comput., 2009, 214(2), 581–587.

    Google Scholar

    [8] L. J. Chen and X. D. Xie, Permanence of an N-species cooperation system with continuous time delays and feedback controls, Nonlinear Anal. Real World Appl., 2011, 12(1), 34–38. doi: 10.1016/j.nonrwa.2010.05.033

    CrossRef Google Scholar

    [9] Z. L. Feng, Y. D. Yang, D. S. Xu, et al., Timely identification of optimal control strategies for emerging infectious diseases, J. Theor. Biol., 2009, 259(1), 165–171. doi: 10.1016/j.jtbi.2009.03.006

    CrossRef Google Scholar

    [10] M. M. Gao and D. Q. Jiang, Stationary distribution of a chemostat model with distributed delay and stochastic perturbations, Appl. Math. Lett., 2022, 123, 107585. doi: 10.1016/j.aml.2021.107585

    CrossRef Google Scholar

    [11] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic, Dordrecht, 1992.

    Google Scholar

    [12] K. Gopalsamy and P. X. Weng, Feedback regulation of logistic growth, Internat. J. Math. Math. Sci., 1993, 16(1), 177–192. doi: 10.1155/S0161171293000213

    CrossRef Google Scholar

    [13] K. Gopalsamy and P. X. Weng, Global attractivity in a competition system with feedback controls, Comput. Math. Appl., 2003, 45(4–5), 665–676. doi: 10.1016/S0898-1221(03)00026-9

    CrossRef Google Scholar

    [14] R. Y. Han and F. D. Chen, Global stability of a commensal symbiosis model with feedback controls, Commun. Math. Biol. Neurosci., 2015, 2015, Article ID 15.

    Google Scholar

    [15] J. Hu and Z. J. Liu, Incorportating two coupling noises into a nonlinear competitive system with saturation effect, Int. J. Biomath., 2020, 13(2), 2050012. doi: 10.1142/S1793524520500126

    CrossRef Google Scholar

    [16] D. H. Janzen, Euglossine bees as long-distance pollinators of tropical plants, Science, 1971, 171(3967), 203–205. doi: 10.1126/science.171.3967.203

    CrossRef Google Scholar

    [17] C. Y. Ji and D. Q. Jiang, Persistence and non-persistence of a mutualism system with stochastic perturbation, Discrete Contin. Dyn. Syst., 2012, 32(3), 867–889. doi: 10.3934/dcds.2012.32.867

    CrossRef Google Scholar

    [18] C. Y. Ji, X. Yang and Y. Li, Permanence, extinction and periodicity to a stochastic competitive model with infinite distributed delays, J. Dynam. Differential Equations, 2021, 33(1), 135–176. doi: 10.1007/s10884-020-09850-7

    CrossRef Google Scholar

    [19] R. Z. Khas'minskii, Stochastic Stability of Differential Equations, Alphen aan den Rijn, Netherlands, 1980.

    Google Scholar

    [20] Y. Kuang and H. L. Smith, Global stability for in infinite delay Lotka-Volterra type system, J. Differ. Equations, 1993, 103(2), 221–246. doi: 10.1006/jdeq.1993.1048

    CrossRef Google Scholar

    [21] S. Lefschetz, Stability of Nonlinear Control Systems, Academic Press, New York, 1965.

    Google Scholar

    [22] Q. Li, Z. J. Liu and S. L. Yuan, Cross-diffusion induced turing instability for a competition model with saturation effect, Appl. Math. Comput., 2019, 347, 64–77.

    Google Scholar

    [23] M. Liu and K. Wang, Analysis of a stochastic autonomous mutualism model, J. Math. Anal. Appl., 2013, 402(1), 392–403. doi: 10.1016/j.jmaa.2012.11.043

    CrossRef Google Scholar

    [24] M. Liu, K. Wang and Q. Wu, Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle, Bull. Math. Biol., 2011, 73(9), 1969–2012. doi: 10.1007/s11538-010-9569-5

    CrossRef Google Scholar

    [25] Q. Liu, D. Q. Jiang and T. Hayat, Dynamics of stochastic predator-prey models with distributed delay and stage structure for prey, Int. J. Biomath., 2021, 14(4), 2150020. doi: 10.1142/S1793524521500200

    CrossRef Google Scholar

    [26] Z. J. Liu, J. H. Wu, R. H. Tan and Y. P. Chen, Modeling and analysis of a periodic delayed two-species model of facultative mutualism, Appl. Math. Comput., 2010, 217(2), 893–903.

    Google Scholar

    [27] A. J. Lotka, Elements of Mathematical Biology, Dover, New York, 1924.

    Google Scholar

    [28] N. Macdonald, Time Lags in Biological Models, Lecture Notes in Biomathematics, Springer-Verlag, Berlin, 1978.

    Google Scholar

    [29] R. X. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester, 2007.

    Google Scholar

    [30] R. N. Mariscal, The nature of the symbiosis between Indo-Pacific anemone fishes and sea anemones, Mar. Biol., 1970, 6(1), 58–65. doi: 10.1007/BF00352608

    CrossRef Google Scholar

    [31] D. Maxin, P. Georgescu, L. Sega and L. Berec, Global stability of the coexistence equilibrium for a general class of models of facultative mutualism, J. Biol. Dynam., 2017, 11(1), 339–364. doi: 10.1080/17513758.2017.1343871

    CrossRef Google Scholar

    [32] R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, NJ, 2001.

    Google Scholar

    [33] D. Mckey, The ecology of coevolved seed dispersal systems, coevolution of animals and plants (eds. L. E. Gilbert and P. H. Raven), University of Texas Press, Austin, 1975, 159–191.

    Google Scholar

    [34] C. M. Moore and J. W. Dittel, On mutualism, models, and masting: The effects of seed-dispersing animals on the plants they disperse, J. Ecol., 2020, 108(5), 1775–1783. doi: 10.1111/1365-2745.13414

    CrossRef Google Scholar

    [35] E. P. Odum, Fundamental of Ecology, Vol. 3, Saunders, Philadelphia, 1971.

    Google Scholar

    [36] K. G. Poter, Enhancement of algal growth and productivity by grazing zooplankton, Science, 1967, 192(4246), 1332–1334.

    Google Scholar

    [37] S. H. Pryor, R. Hill, D. L. Dixson, et al., Anemonefish facilitate bleaching recovery in a host sea anemone, Sci. Rep., 2020, 10(1), 1–9. doi: 10.1038/s41598-019-56847-4

    CrossRef Google Scholar

    [38] K. Qi, Z. J. Liu, L. W. Wang and Q. L. Wang, Survival and stationary distribution of a stochastic facultative mutualism model with distributed delays and strong kernels, Math. Biosci. Eng., 2021, 18, 3160–3179.

    Google Scholar

    [39] S. G. Ruan, Delay Differential Equations in Single Species Dynamics, in Delay Differential Equations and Applications (eds. O. Arino, et al.), Springer, New York, 2006.

    Google Scholar

    [40] H. L. Smith, On the asymptotic behavior of a class of deterministic models of cooperating species, SIAM J. Appl. Math., 1986, 46(3), 368–375.

    Google Scholar

    [41] S. Y. Tang and L. S. Chen, Global qualitative analysis for a ratio-dependent predator-prey model with delay, J. Math. Anal. Appl., 2002, 266(2), 401–419.

    Google Scholar

    [42] C. J. Van Der Kooi, M. Vallejo-Marín and S. D. Leonhardt, Mutualisms and (a) symmetry in plant-pollinator interactions, Curr. Biol., 2021, 31(2), R91–R99.

    Google Scholar

    [43] V. Volterra, Lecons sur la Theorie Mathematique de la Lutte pour la Vie, Gauthier-Villars, Paris, 1931.

    Google Scholar

    [44] Y. N. Xiao, S. Y. Tang and J. F. Chen, Permanence and periodic solution in competitive system with feedback controls, Math. Comput. Model., 1998, 27(6), 33–37.

    Google Scholar

    [45] D. Y. Xu, Y. M. Huang and Z. G. Yang, Existence theorems for periodic Markov process and stochastic functional differential equations, Discrete Contin. Dyn. Syst., 2009, 24(3), 1005–1023.

    Google Scholar

    [46] K. Yang, H. N. Wang and F. D. Chen, On the stability property of a Lotka-Volterra cooperation system with feedback controls, Mathematica Applicata, 2014, 27(2), 243–247. (in Chinese)

    Google Scholar

    [47] W. J. Zuo, D. Q. Jiang, X. G. Sun, T. Hayat and A. Alsaedi, Long-time behaviors of a stochastic cooperative Lotka-Volterra system with distributed delay, Phys. A, 2018, 506, 542–559.

    Google Scholar

Figures(4)  /  Tables(2)

Article Metrics

Article views(1061) PDF downloads(277) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint