2024 Volume 14 Issue 2
Article Contents

Gangwei Wang, Mengyue He, Qin Zhou, Yakup Yıldırım, Anjan Biswas, Hashim Alshehri. HIGHLY DISPERSIVE OPTICAL SOLITONS WITH QUADRATIC-CUBIC NONLINEAR REFRACTIVE INDEX BY LIE SYMMETRY[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 682-702. doi: 10.11948/20220417
Citation: Gangwei Wang, Mengyue He, Qin Zhou, Yakup Yıldırım, Anjan Biswas, Hashim Alshehri. HIGHLY DISPERSIVE OPTICAL SOLITONS WITH QUADRATIC-CUBIC NONLINEAR REFRACTIVE INDEX BY LIE SYMMETRY[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 682-702. doi: 10.11948/20220417

HIGHLY DISPERSIVE OPTICAL SOLITONS WITH QUADRATIC-CUBIC NONLINEAR REFRACTIVE INDEX BY LIE SYMMETRY

  • Author Bio: Email: 2579676196@qq.com(M. He); Email: qinzhou@whu.edu.cn(Q. Zhou); Email: yakupyildirim110@gmail.com(Y. Yıldırım); Email: biswas.anjan@gmail.com(A. Biswas); Email: hmalshehri@kau.edu.sa(H. Alshehri)
  • Corresponding author: Email: gangwei@hueb.edu.cn(G. Wang) 
  • Fund Project: The authors were supported by Natural Science Foundation of Hebei Province of China (No. A2023207002), '333 Talent Project' of Hebei Province (No. C20221021), Youth Key Program of Hebei University of Economics and Business (2018QZ07), Key Program of Hebei University of Economics and Business (2020ZD11, 2023ZD10), Youth Team Support Program of Hebei University of Economics and Business
  • This paper addresses highly dispersive optical solitons with quadratic–cubic nonlinear form of self–phase modulation. Lie symmetry analysis reduced the governing model to an ordinary differential equation which was further analyzed using two approaches. The series expansion approach and the $ F $–expansion scheme yielded soliton solutions as well as an abundance of additional solutions to the model. The parameter restrictions were also enumerated to provide a formidable structure to the solutions.

    MSC: 22E70, 35Q51, 35C08
  • 加载中
  • [1] A. Bansal, et. al., Lie symmetry analysis for cubic-quartic nonlinear Schrödinger's equation, Optik, 2018, 169, 12–15. doi: 10.1016/j.ijleo.2018.05.030

    CrossRef Google Scholar

    [2] A. Biswas, et. al., Conservation laws for highly dispersive optical solitons, Optik, 2019, 199, 163283. doi: 10.1016/j.ijleo.2019.163283

    CrossRef Google Scholar

    [3] A. Biswas, et. al., Highly dispersive optical solitons with Kerr law nonlinearity by F-expansion, Optik, 2019, 181, 1028–1038. doi: 10.1016/j.ijleo.2018.12.164

    CrossRef Google Scholar

    [4] A. Biswas et. al, Highly dispersive optical solitons with cubic–quintic-septic law by extended Jacobi's elliptic function expansion, Optik, 2019, 183, 571–578. doi: 10.1016/j.ijleo.2019.02.127

    CrossRef Google Scholar

    [5] A. Biswas, et. al., Highly dispersive optical solitons with cubic–quintic-septic law by exp–expansion, Optik, 2019, 186, 321–325. doi: 10.1016/j.ijleo.2019.04.085

    CrossRef Google Scholar

    [6] A. Biswas, et. al., Highly dispersive optical solitons with non–local nonlinearity by F-expansion, Optik, 2019, 183, 1140–1150. doi: 10.1016/j.ijleo.2019.02.037

    CrossRef Google Scholar

    [7] A. Biswas, et. al., Highly dispersive optical solitons with non–local nonlinearity by extended Jacobi's elliptic function expansion, Optik, 2019, 184, 277–286. doi: 10.1016/j.ijleo.2019.03.061

    CrossRef Google Scholar

    [8] G. W. Bluman, A. Cheviakov and S. Anco, Applications of Symmetry Methods to Partial Differential Equations, Springer, New York, 2010.

    Google Scholar

    [9] S. J. Chen, X. Lü and Y. H. Yin, Dynamic behaviors of the lump solutions and mixed solutions to a (2+1)-dimensional nonlinear model, Commun. Theor. Phys., 2023, 75, 055005. doi: 10.1088/1572-9494/acc6b8

    CrossRef Google Scholar

    [10] Y. Chen, X. Lü and X. L. Wang, Bäcklund transformation, Wronskian solutions and interaction solutions to the (3+1)-dimensional generalized breaking soliton equation, Eur. Phys. J. Plus, 2023, 138, 492. doi: 10.1140/epjp/s13360-023-04063-5

    CrossRef Google Scholar

    [11] D. Gao, X. Lü and M. S. Peng, Study on the (2+1)-dimensional extension of Hietarinta equation: soliton solutions and Bäcklund transformation, Phys. Scr., 2023, 98, 095225. doi: 10.1088/1402-4896/ace8d0

    CrossRef Google Scholar

    [12] K. W. Liu, X. Lü, F. Gao and J. Zhang, Expectation-maximizing network reconstruction and most applicable network types based on binary time series data, Physica D, 2023, 454, 133834. doi: 10.1016/j.physd.2023.133834

    CrossRef Google Scholar

    [13] P. J. Olver, Application of Lie Group to Differential Equation, Springer, New York, 1986.

    Google Scholar

    [14] X. Tang and G. Xu, Microscopic conservation laws for the derivative nonlinear Schrödinger equation, Lett. Math. Phys., 2021, 111, 138. doi: 10.1007/s11005-021-01478-y

    CrossRef Google Scholar

    [15] K. T. Vu, J. Butcher and J. Carminati, Similarity solutions of partial differential equations using DESOLV, Comp. Phys. Comm., 2007, 176, 682–693. doi: 10.1016/j.cpc.2007.03.005

    CrossRef Google Scholar

    [16] G. Wang, et al., Highly dispersive optical solitons in polarization–preserving fibers with Kerr law nonlinearity by Lie symmetry, Phys. Lett. A, 2022, 421, 127768. doi: 10.1016/j.physleta.2021.127768

    CrossRef Google Scholar

    [17] F. Xie, Y. Zhang and Z. Lü, Symbolic computation in non-linear evolution equation: application to (3+1)-dimensional Kadomtsev-Petviashvili equation, Chaos, Solitons Fractals, 2005, 24, 257–263. doi: 10.1016/S0960-0779(04)00552-1

    CrossRef Google Scholar

    [18] G. Yi, On the dispersionless Davey–Stewartson system: Hamiltonian vector field Lax pair and relevant nonlinear Riemann–Hilbert problem for dDS–Ⅱ system, Lett. Math. Phys., 2020, 110, 445–463. doi: 10.1007/s11005-019-01224-5

    CrossRef Google Scholar

    [19] Y. H. Yin and X. Lü, Dynamic analysis on optical pulses via modified PINNs: Soliton solutions, rogue waves and parameter discovery of the CQ-NLSE, Commun. Nonlinear. Sci., 2023, 126, 107441. doi: 10.1016/j.cnsns.2023.107441

    CrossRef Google Scholar

    [20] E. M. E. Zayed, M. E. M. Alngar, R. M. A. Shohib, T. A. Nofal and K. A. Gepreel, Highly dispersive optical solitons in birefringent fibers for perturbed complex Ginzburg–Landau equation having polynomial law of nonlinearity. Optik, 2022, 261, 169206. doi: 10.1016/j.ijleo.2022.169206

    CrossRef Google Scholar

    [21] Z. Zhao, et. al., Space-curved resonant solitons and interaction solutions of the (2+1)-dimensional Ito equation, Appl. Math. Lett., 2023, 146, 108799. doi: 10.1016/j.aml.2023.108799

    CrossRef Google Scholar

    [22] Z. Zhao and L. He, Multiple lump molecules and interaction solutions of the Kadomtsev–Petviashvili Ⅰ equation, Commun. Theor. Phys., 2023, 74, 105004.

    Google Scholar

    [23] Z. Zhao, L. He and A. M. Wazwaz, Dynamics of lump chains for the BKP equation describing propagation of nonlinear waves, Chin. Phys. B, 2023, 32(4), 040501. doi: 10.1088/1674-1056/acb0c1

    CrossRef Google Scholar

Article Metrics

Article views(1283) PDF downloads(325) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint