Citation: | Gangwei Wang, Mengyue He, Qin Zhou, Yakup Yıldırım, Anjan Biswas, Hashim Alshehri. HIGHLY DISPERSIVE OPTICAL SOLITONS WITH QUADRATIC-CUBIC NONLINEAR REFRACTIVE INDEX BY LIE SYMMETRY[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 682-702. doi: 10.11948/20220417 |
This paper addresses highly dispersive optical solitons with quadratic–cubic nonlinear form of self–phase modulation. Lie symmetry analysis reduced the governing model to an ordinary differential equation which was further analyzed using two approaches. The series expansion approach and the $ F $–expansion scheme yielded soliton solutions as well as an abundance of additional solutions to the model. The parameter restrictions were also enumerated to provide a formidable structure to the solutions.
[1] | A. Bansal, et. al., Lie symmetry analysis for cubic-quartic nonlinear Schrödinger's equation, Optik, 2018, 169, 12–15. doi: 10.1016/j.ijleo.2018.05.030 |
[2] | A. Biswas, et. al., Conservation laws for highly dispersive optical solitons, Optik, 2019, 199, 163283. doi: 10.1016/j.ijleo.2019.163283 |
[3] | A. Biswas, et. al., Highly dispersive optical solitons with Kerr law nonlinearity by F-expansion, Optik, 2019, 181, 1028–1038. doi: 10.1016/j.ijleo.2018.12.164 |
[4] | A. Biswas et. al, Highly dispersive optical solitons with cubic–quintic-septic law by extended Jacobi's elliptic function expansion, Optik, 2019, 183, 571–578. doi: 10.1016/j.ijleo.2019.02.127 |
[5] | A. Biswas, et. al., Highly dispersive optical solitons with cubic–quintic-septic law by exp–expansion, Optik, 2019, 186, 321–325. doi: 10.1016/j.ijleo.2019.04.085 |
[6] | A. Biswas, et. al., Highly dispersive optical solitons with non–local nonlinearity by F-expansion, Optik, 2019, 183, 1140–1150. doi: 10.1016/j.ijleo.2019.02.037 |
[7] | A. Biswas, et. al., Highly dispersive optical solitons with non–local nonlinearity by extended Jacobi's elliptic function expansion, Optik, 2019, 184, 277–286. doi: 10.1016/j.ijleo.2019.03.061 |
[8] | G. W. Bluman, A. Cheviakov and S. Anco, Applications of Symmetry Methods to Partial Differential Equations, Springer, New York, 2010. |
[9] | S. J. Chen, X. Lü and Y. H. Yin, Dynamic behaviors of the lump solutions and mixed solutions to a (2+1)-dimensional nonlinear model, Commun. Theor. Phys., 2023, 75, 055005. doi: 10.1088/1572-9494/acc6b8 |
[10] | Y. Chen, X. Lü and X. L. Wang, Bäcklund transformation, Wronskian solutions and interaction solutions to the (3+1)-dimensional generalized breaking soliton equation, Eur. Phys. J. Plus, 2023, 138, 492. doi: 10.1140/epjp/s13360-023-04063-5 |
[11] | D. Gao, X. Lü and M. S. Peng, Study on the (2+1)-dimensional extension of Hietarinta equation: soliton solutions and Bäcklund transformation, Phys. Scr., 2023, 98, 095225. doi: 10.1088/1402-4896/ace8d0 |
[12] | K. W. Liu, X. Lü, F. Gao and J. Zhang, Expectation-maximizing network reconstruction and most applicable network types based on binary time series data, Physica D, 2023, 454, 133834. doi: 10.1016/j.physd.2023.133834 |
[13] | P. J. Olver, Application of Lie Group to Differential Equation, Springer, New York, 1986. |
[14] | X. Tang and G. Xu, Microscopic conservation laws for the derivative nonlinear Schrödinger equation, Lett. Math. Phys., 2021, 111, 138. doi: 10.1007/s11005-021-01478-y |
[15] | K. T. Vu, J. Butcher and J. Carminati, Similarity solutions of partial differential equations using DESOLV, Comp. Phys. Comm., 2007, 176, 682–693. doi: 10.1016/j.cpc.2007.03.005 |
[16] | G. Wang, et al., Highly dispersive optical solitons in polarization–preserving fibers with Kerr law nonlinearity by Lie symmetry, Phys. Lett. A, 2022, 421, 127768. doi: 10.1016/j.physleta.2021.127768 |
[17] | F. Xie, Y. Zhang and Z. Lü, Symbolic computation in non-linear evolution equation: application to (3+1)-dimensional Kadomtsev-Petviashvili equation, Chaos, Solitons Fractals, 2005, 24, 257–263. doi: 10.1016/S0960-0779(04)00552-1 |
[18] | G. Yi, On the dispersionless Davey–Stewartson system: Hamiltonian vector field Lax pair and relevant nonlinear Riemann–Hilbert problem for dDS–Ⅱ system, Lett. Math. Phys., 2020, 110, 445–463. doi: 10.1007/s11005-019-01224-5 |
[19] | Y. H. Yin and X. Lü, Dynamic analysis on optical pulses via modified PINNs: Soliton solutions, rogue waves and parameter discovery of the CQ-NLSE, Commun. Nonlinear. Sci., 2023, 126, 107441. doi: 10.1016/j.cnsns.2023.107441 |
[20] | E. M. E. Zayed, M. E. M. Alngar, R. M. A. Shohib, T. A. Nofal and K. A. Gepreel, Highly dispersive optical solitons in birefringent fibers for perturbed complex Ginzburg–Landau equation having polynomial law of nonlinearity. Optik, 2022, 261, 169206. doi: 10.1016/j.ijleo.2022.169206 |
[21] | Z. Zhao, et. al., Space-curved resonant solitons and interaction solutions of the (2+1)-dimensional Ito equation, Appl. Math. Lett., 2023, 146, 108799. doi: 10.1016/j.aml.2023.108799 |
[22] | Z. Zhao and L. He, Multiple lump molecules and interaction solutions of the Kadomtsev–Petviashvili Ⅰ equation, Commun. Theor. Phys., 2023, 74, 105004. |
[23] | Z. Zhao, L. He and A. M. Wazwaz, Dynamics of lump chains for the BKP equation describing propagation of nonlinear waves, Chin. Phys. B, 2023, 32(4), 040501. doi: 10.1088/1674-1056/acb0c1 |