2024 Volume 14 Issue 2
Article Contents

Mohamed Amine Ighachane, Mohamed Akkouchi, Mohammad Sababheh. NEW INEQUALITIES FOR POSITIVE CONVEX FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 703-716. doi: 10.11948/20220506
Citation: Mohamed Amine Ighachane, Mohamed Akkouchi, Mohammad Sababheh. NEW INEQUALITIES FOR POSITIVE CONVEX FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 703-716. doi: 10.11948/20220506

NEW INEQUALITIES FOR POSITIVE CONVEX FUNCTIONS

  • The main goal of this paper is to present new inequalities for convex and log-convex functions. The significance of these inequalities follows from the way they extend many known results in the literature concerning convex functions, log-convex functions, means comparisons and matrix inequalities.

    MSC: 26A51, 39B62, 15A60, 47A63
  • 加载中
  • [1] J. M. Aldaz, Comparison of differences between arithmetic and geometric means, Tamkang J. Math., 2011, 24, 453–462.

    Google Scholar

    [2] Y. Al-Manasrah and F. Kittaneh, A generalization of two refined Young inequalities, Positivity, 2015, 19, 757–768. doi: 10.1007/s11117-015-0326-8

    CrossRef Google Scholar

    [3] Y. Al-Manasrah and F. Kittaneh, Further generalization refinements and reverses of the Young and Heinz inequalities, Results Math., 2016, 19, 757–768.

    Google Scholar

    [4] H. Alzer, C. M. Fonseca and A. Kovačes, Young-type inequalities and their matrix analogues, Linear Multilinear Algebra, 2015, 63(3), 622–635. doi: 10.1080/03081087.2014.891588

    CrossRef Google Scholar

    [5] R. Bhatia, Matrix Analysis, Springer, New York, 1997.

    Google Scholar

    [6] D. Choi, A generalization of Young-type inequalities, Math. Inequal. Appl., 2018, 21, 99–106.

    Google Scholar

    [7] C. Conde, N. Minculete, H. Moradi and M. Sababheh, Norm inequalities via convex and log-convex functions, Mediterr. J. Math., 2023, 20, 6. doi: 10.1007/s00009-022-02214-z

    CrossRef Google Scholar

    [8] S. S. Dragomir, On Jensen's additive inequality for positive convex functions of self-adjoint operators in Hilbert spaces, Jordan J. Math. Stat., 2020, 12(4), 601–623.

    Google Scholar

    [9] O. Hirzallah and F. Kittaneh, Matrix Young inequalities for the Hilbert-Schmidt norm, Linear Algebra Appl., 2000, 308, 77–84. doi: 10.1016/S0024-3795(99)00270-0

    CrossRef Google Scholar

    [10] M. A. Ighachane and M. Akkouchi, A new generalization of two refined Young inequalities and applications, Moroccan J. Pure Appl. Anal., 2020, 6(2), 155–167. doi: 10.2478/mjpaa-2020-0012

    CrossRef Google Scholar

    [11] M. A. Ighachane and M. Akkouchi, Further generalized refinement of Young's inequalities for $\tau$-measurable operators, Moroccan J. Pure Appl. Anal., 2021, 7(2), 214–226. doi: 10.2478/mjpaa-2021-0015

    CrossRef $\tau$-measurable operators" target="_blank">Google Scholar

    [12] M. A. Ighachane and M. Akkouchi, Further refinement of Young's type inequality for positive linear maps, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 2021, 115, Article No. 94. doi: 10.1007/s13398-021-01032-4

    CrossRef Google Scholar

    [13] M. A. Ighachane, M. Akkouchi and El Hassan Benabdi, A new generalized refinement of the weighted arithmetic-geometric mean inequality, Math. Inequal. Appl., 2020, 23(3), 1079–1085.

    Google Scholar

    [14] M. Khosravi, Some matrix inequalities for weighted power mean, Ann. Func. Anal., 2016, 7, 348–357. doi: 10.1215/20088752-3544480

    CrossRef Google Scholar

    [15] F. Kittaneh, Norm inequalities for fractional powers of positive operators, Lett. Math. Phys., 1993, 27, 279–285. doi: 10.1007/BF00777375

    CrossRef Google Scholar

    [16] F. Kittaneh and Y. Al-Manasrah, Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl., 2010, 36, 292–269.

    Google Scholar

    [17] M. Latif, Weighted Hermite–Hadamard type inequalities for differentiable GA-convex and geometrically quasiconvex mappings, Rocky mountain J. Math., 2021, 51(6), 1899–1908.

    Google Scholar

    [18] M. Latif and S. S. Dragomir, Generalization of Hermite-Hadamard type inequalities for $n$-times differentiable functions through preinvexity, Georgian Math. J., 2016, 23(1), 97–104. doi: 10.1515/gmj-2015-0053

    CrossRef $n$-times differentiable functions through preinvexity" target="_blank">Google Scholar

    [19] W. Liao and J. Wu, Matrix inequalities for the difference between arithmetic mean and harmonic mean, Ann. Func. Anal., 2015, 6, 191–202.

    Google Scholar

    [20] W. Liu and H. Zhuang, Some quantum estimates of Hermite-Hadamard inequalities for convex functions, J. Appl. Anal. Comp., 2017, 7(2), 501–522. doi: 10.11948/2017031

    CrossRef Google Scholar

    [21] B. Meftah, M. Merad and A. Souahi, Some Hermite-Hadamard type inequalities for functions whose derivatives are quasi-convex, Jordan J. Math. Stat., 2019, 12, 219–231.

    Google Scholar

    [22] F. Mitroi, About the precision in Jensen-Steffensen inequality, Ann. Univ. Craiova, 2010, 37(4), 73–84.

    Google Scholar

    [23] J. Pečarić, T. Furuta, T. Mićić and T. Seo, Mond-Pečarić Method in Operator Inequalities, Element, Zagreb, 2005.

    Google Scholar

    [24] J. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic press Inc., 1992.

    Google Scholar

    [25] M. Sababheh, Improved Jensen's inequality, Math. Inequal. Appl., 2017, 20(2), 389–403.

    Google Scholar

    [26] M. Sababheh, Convexity and matrix means, Linear Algebra Appl., 2016, 506, 588–602.

    Google Scholar

    [27] M. Sababheh, Log and harmonically log-convex functions related to matrix norms, Oper. Matrices, 2016, 10(2), 453–465.

    Google Scholar

    [28] M. Sababheh, Graph indices via the AM-GM inequality, Discrete Appl. Math., 2017, 230(4), 100–111

    Google Scholar

Article Metrics

Article views(1638) PDF downloads(570) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint