2025 Volume 15 Issue 2
Article Contents

Muhammad Nasir, Shuobing Yang, Mohammad Alqudah, Ali M. Mahnashi, Rasool Shah. APPROXIMATE SOLUTION OF FRACTIONAL-ORDER FITZHUGH-NAGUMO EQUATION WITH IN NATURAL TRANSFORM[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 624-639. doi: 10.11948/20220410
Citation: Muhammad Nasir, Shuobing Yang, Mohammad Alqudah, Ali M. Mahnashi, Rasool Shah. APPROXIMATE SOLUTION OF FRACTIONAL-ORDER FITZHUGH-NAGUMO EQUATION WITH IN NATURAL TRANSFORM[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 624-639. doi: 10.11948/20220410

APPROXIMATE SOLUTION OF FRACTIONAL-ORDER FITZHUGH-NAGUMO EQUATION WITH IN NATURAL TRANSFORM

  • In this paper, we use, for the first time, the Natural residual power series method (NRPSM) as a new iteration method to study the Caputo version of the Fitzhugh-Nagumo equation. The Fitzhugh-Nagumo equation is an essential mathematical model that is widely used to characterize the behavior of excitable systems, and is valuable for understanding significant physiological and biological processes. To start, we translate the Fitzhugh-Nagumo equation system into its Natural domain representation, and then we employ the NRPSM to obtain a series form result. After that, we present a new iteration methodology for improving the convergence characteristics of the series solution as well as the accuracy of the computations. In this paper, a comprehensive approach for investigating the Fitzhugh-Nagumo equation with Natural transform is developed and validated, thus can help researchers to explore the various dynamics and behaviors of the excitable systems more effectively. Based on the results obtained, we conclude that the suggested approach to the solution of DEs with the Caputo operator has a great potential for different applications in several fields of science and engineering.

    MSC: 33B15, 34A34, 35A20, 35A22, 44A10
  • 加载中
  • [1] M. Alfaro, D. Hilhorst and H. Matano, The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system, Journal of Differential Equations, 2008, 245(2), 505–565. doi: 10.1016/j.jde.2008.01.014

    CrossRef Google Scholar

    [2] A. S. Alshehry, H. Yasmin, A. Ali and I. Khan, Fractional-order view analysis of Fishers and foam drainage equations within Aboodh transform, Engineering Computations, 2024, 41(3), 489–515. doi: 10.1108/EC-08-2023-0475

    CrossRef Google Scholar

    [3] A. S. Alshehry, H. Yasmin, R. Ullah and A. Khan, Fractional-order modeling: Analysis of foam drainage and Fisher's equations, Open Physics, 2023, 21(1), p. 20230115. doi: 10.1515/phys-2023-0115

    CrossRef Google Scholar

    [4] G. A. Anastassiou, On right fractional calculus, Chaos Solit. Frac., 2009, 42(1), 365–376. doi: 10.1016/j.chaos.2008.12.013

    CrossRef Google Scholar

    [5] D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods (Vol. 3), World Scientific, 2012.

    Google Scholar

    [6] F. B. M. Belgacem and R. Silambarasan, Theory of natural transform, aerospace (MESA), Math. Eng. Sci., 2012, 3(1), 99–124.

    Google Scholar

    [7] P. L. Butzer and U. Westphal, An introduction to fractional calculus, in Applications of Fractional Calculus in Physics, 2000, 1–85.

    Google Scholar

    [8] S. A. El-Tantawy, R. T. Matoog, R. Shah, A. W. Alrowaily and S. M. Ismaeel, On the shock wave approximation to fractional generalized Burger-Fisher equations using the residual power series transform method, Physics of Fluids, 2024, 36(2).

    Google Scholar

    [9] A. H. Ganie, H. Yasmin, A. A. Alderremy, R. Shah and S. Aly, An efficient semi-analytical techniques for the fractional-order system of Drinfeld-Sokolov-Wilson equation, Physica Scripta, 2024, 99(1), p. 015253.

    Google Scholar

    [10] M. A. Garcia-Aspeitia, G. Fernandez-Anaya, A. Hernandez-Almada, G. Leon and J. Magana, Cosmology under the fractional calculus approach, Monthly Notices of the Royal Astronomical Society, 2022, 517(4), 4813–4826. doi: 10.1093/mnras/stac3006

    CrossRef Google Scholar

    [11] M. M. A. Hammad, A. W. Alrowaily, S. M. Ismaeel and S. A. El-Tantawy, Analytical analysis of fractional nonlinear Jaulent-Miodek system with energy-dependent Schrodinger potential, Frontiers in Physics, 2023, 11, p. 1148306. doi: 10.3389/fphy.2023.1148306

    CrossRef Google Scholar

    [12] R. Hilfer (ed), Application of Fractional Calculus in Physics, World Scientific Publishing Co., Singapore, 2000.

    Google Scholar

    [13] B. Inan, K. K. Ali, A. Saha and T. Ak, Analytical and numerical solutions of the Fitzhugh-Nagumo equation and their multistability behavior, Numerical Methods for Partial Differential Equations, 2021, 37(1), 7–23. doi: 10.1002/num.22516

    CrossRef Google Scholar

    [14] Z. H. Khan and W. A. Khan, N-transform properties and applications, NUST J. Eng. Sci., 2008, 1(1), 127–133.

    Google Scholar

    [15] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, 24, North-Holland Mathematics Studies, Amsterdame, 2006.

    Google Scholar

    [16] M. Krupa, B. Sandstede and P. Szmolyan, Fast and slow waves in the FitzHugh-Nagumo equation, Journal of Differential Equations, 1997, 133(1), 49–97. doi: 10.1006/jdeq.1996.3198

    CrossRef Google Scholar

    [17] D. Kumar, J. Singh and D. Baleanu, A new numerical algorithm for fractional Fitzhugh-Nagumo equation arising in transmission of nerve impulses, Nonlinear Dynamics, 2018, 91, 307–317. doi: 10.1007/s11071-017-3870-x

    CrossRef Google Scholar

    [18] S. Kumar, A. Yildirim, Y. Khan and L. Wei, A fractional model of the diffusion equation and its analytical solution using Laplace transform, Sci. Iran. B, 2012, 19(4), 1117–1123. doi: 10.1016/j.scient.2012.06.016

    CrossRef Google Scholar

    [19] J. E. Macias-Diaz, A. S. Hendy and N. S. Markov, A bounded numerical solver for a fractional FitzHugh-Nagumo equation and its high-performance implementation, Engineering with Computers, 2021, 37, 1593–1609. doi: 10.1007/s00366-019-00902-1

    CrossRef Google Scholar

    [20] I. Y. Miranda-Valdez, J. G. Puente-Cordova, F. Y. Renteria-Baltierrez, L. Fliri, M. Hummel, A. Puisto, J. Koivisto and M. J. Alava, Viscoelastic phenomena in methylcellulose aqueous systems: Application of fractional calculus, Food Hydrocolloids, 2024, 147, p. 109334. doi: 10.1016/j.foodhyd.2023.109334

    CrossRef Google Scholar

    [21] S. Noor, W. Albalawi, R. Shah, M. M. Al-Sawalha and S. M. Ismaeel, Mathematical frameworks for investigating fractional nonlinear coupled Korteweg-de Vries and Burgers equations, Frontiers in Physics, 2024, 12, p. 1374452. doi: 10.3389/fphy.2024.1374452

    CrossRef Google Scholar

    [22] S. Noor, A. S. Alshehry and A. Shafee, Families of propagating soliton solutions for (3+ 1)-fractional Wazwaz-Benjamin Bona-Mahony equation through a novel modification of modified extended direct algebraic method, Physica Scripta, 2024, 99(4), p. 045230.

    Google Scholar

    [23] H. S. Patel and T. Patel, Applications of fractional reduced differential transform method for solving the generalized fractional-order Fitzhugh-Nagumo equation, International Journal of Applied and Computational Mathematics, 2021, 7(5), p. 188. doi: 10.1007/s40819-021-01130-2

    CrossRef Google Scholar

    [24] P. Ramani, A. M. Khan, D. L. Suthar and D. Kumar, Approximate analytical solution for non-linear Fitzhugh-Nagumo equation of time fractional order through fractional reduced differential transform method, International Journal of Applied and Computational Mathematics, 2022, 8(2), p. 61. doi: 10.1007/s40819-022-01254-z

    CrossRef Google Scholar

    [25] K. Shah, H. Khalil and R. A. Khan, Analytical solutions of fractional order diffusion equations by natural transform method, Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42(3), 1479–1490. doi: 10.1007/s40995-016-0136-2

    CrossRef Google Scholar

    [26] R. Silambarasn and F. B. M. Belgacem, Applications of the natural trans-form to Maxwell's equations, progress, in: Electromagnet ics research symposium proceedings, Suzhou, China, Sept., 2011, 12(16), 11 pp.

    Google Scholar

    [27] E. Yanagida, Stability of fast travelling pulse solutions of the FitzHugh-Nagumo equations, Journal of Mathematical Biology, 1985, 22, 81–104.

    Google Scholar

    [28] Q. Yang, D. Chen, T. Zhao and Y. Chen, Fractional calculus in image processing: A review, Fractional Calculus and Applied Analysis, 2016, 19(5), 1222–1249. doi: 10.1515/fca-2016-0063

    CrossRef Google Scholar

    [29] A. Yokus, On the exact and numerical solutions to the FitzHugh-Nagumo equation, International Journal of Modern Physics B, 2020, 34(17), p. 2050149. doi: 10.1142/S0217979220501490

    CrossRef Google Scholar

Figures(5)  /  Tables(6)

Article Metrics

Article views(806) PDF downloads(520) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint