Citation: | Qianhong Zhang, Fei Jin, Zhongni Zhang, Bairong Pan. ASYMPTOTIC FEATURE OF DISCRETE SECOND-ORDER FUZZY DIFFERENCE EQUATION WITH QUADRATIC TERM[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 640-656. doi: 10.11948/20230342 |
This article explores the asymptotic feature of a discrete second-order fractal FDE (fuzzy difference equation) with quadratic term. Specifically, applying a generalization of division (g-division) of two fuzzy numbers, we obtain dynamical features including the boundedness, persistence, and global behavior of a positive fuzzy solution of the following model
$ x_{n+1}=A+\frac{Bx_{n}^2}{x_{n-1}^2}, \ \ n\in N^+, $
where the parameters $A, B\in \Re_f^+$(positive fuzzy number) and the initial values $x_0, x_{-1}\in \Re_f^+$. Finally, two numerical examples are provided to reveal the validity of our findings.
[1] |
R. M. Abu-Saris and R. DeVault, Global stability of $y_{n+1}=A+\frac {y_n}{y_{n-k}}$, Appl. Math. Lett., 2003, 16, 173–178. doi: 10.1016/S0893-9659(03)80028-9
CrossRef $y_{n+1}=A+\frac {y_n}{y_{n-k}}$" target="_blank">Google Scholar |
[2] | R. P. Agarwal, W. T. Li and P. Y. H. Pang, Asymptotic behavior of a class of nolinear delay difference equations, J. Differ. Equat. Appl., 2002, 8, 719–728. doi: 10.1080/1023619021000000735 |
[3] | L. Berg and S. Stevic, On some systems of difference equations, Appllied Mathematics and Computation, 2011, 218, 1713–1718. doi: 10.1016/j.amc.2011.06.050 |
[4] | E. Beso, S. Kalabusic, N. Mujic and E. Pilav, Boundedness of solutions and stability of certain second-order difference equation with quadratic term, Advances in Difference Equations, 2020, 19, 1–22. |
[5] | M. Bohner and S. Streipert, Optimal harvesting policy for the Beverton-Holt model, Mathematical Biosciences and Engineering, 2016, 13, 673–695. doi: 10.3934/mbe.2016014 |
[6] | K. A. Chrysafis, B. K. Papadopoulos and G. Papaschinopoulos, On the fuzzy difference equations of finance, Fuzzy Sets and Systems, 2008, 159(24), 3259–3270. doi: 10.1016/j.fss.2008.06.007 |
[7] |
E. Y. Deeba and A. De Korvin, Analysis by fuzzy difference equations of a model of $CO_2$ level in the blood, Appl. Math. Lett., 1999, 12, 33–40. doi: 10.1016/S0893-9659(98)00168-2
CrossRef $CO_2$ level in the blood" target="_blank">Google Scholar |
[8] | E. Y. Deeba, A. De Korvin and E. L. Koh, A fuzzy difference equation with an application, J. Difference Equation Appl., 1996, 2, 365–374. doi: 10.1080/10236199608808071 |
[9] | L. Gutnik and S. Stevic, On the behaviour of the solutions of a second order difference equation, Discrete Dyn. Nat. Soc., 2007, article ID 27562. |
[10] | M. Hua, P. Cheng, J. Fei, J. Zhang and J. Chen, Robust H1-Ltering for uncertain discrete-time fuzzy stochastic systems with sensor nonlinearities and time-varying delay, Journal of Applied Mathematics, 2012, article ID 402480, 25 pp. |
[11] | T. F. Ibrahim and Q. Zhang, Stability of an anti-competitive system of rational difference equations, Archives Des Sciences, 2013, 66(5), 44–58. |
[12] | K. Ivaz, A. Khastan and J. J. Nieto, A numerical method of fuzzy differential equations and hybrid fuzzy differential equations, Abstract and Applied Analysis, 2013, article ID 735128, 10 pp. |
[13] | A. Khastan, Fuzzy logistic difference equation, Iran. J. Fuzzy Syst., 2018, 15, 55–66. |
[14] | T. Khyat, M. R. S. Kulenovic and E. Pilav, The Naimarck-Sacker bifurcation of a certain difference equation, Journal of Computational Analysis and Applications, 2017, 23(8), 1335–1346. |
[15] | C. Kocak, First-order ARMA type fuzzy time series method based on fuzzy logic relation tables, Mathematical Problems in Engineering, 2013, article ID 769125, 12 pp. |
[16] | V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Application, Kluwer Academic Publishers, Dordrecht, 1993. |
[17] | M. R. S. Kulenonvic and G. Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapaman & Hall/CRC, Boca Raton, 2002. |
[18] | V. Lakshmikantham and A. S. Vatsala, Basic theory of fuzzy difference equations, J. Differ. Equ. Appl., 2002, 8(11), 957–968. doi: 10.1080/1023619021000048850 |
[19] | W. Liu, D. Cai and J. Shi, Dynamic behaviors of a discrete-time predator-prey bioeconomic system, Adv. Differ. Equ., 2018, 2018, 133. doi: 10.1186/s13662-018-1592-0 |
[20] | M. T. Malinowski, On a new set-valued stochastic integral with respect to semi-martingales and its applications, Journal of Mathematical Analysis and Applications, 2013, 408, 669–680. doi: 10.1016/j.jmaa.2013.06.054 |
[21] | M. T. Malinowski, Some properties of strong solutions to stochastic fuzzy differential equations, Information Sciences, 2013, 252, 62–80. doi: 10.1016/j.ins.2013.02.053 |
[22] | M. T. Malinowski, Approximation schemes for fuzzy stochastic integral equations, Applied Mathematics and Computation, 2013, 219, 11278–11290. doi: 10.1016/j.amc.2013.05.040 |
[23] | S. P. Mondal, D. K. Vishwakarma and A. K. Saha, Solution of second order linear fuzzy difference equation by Lagrange's multiplier method, J. Soft Comput. Appl., 2016, 1, 11–27. |
[24] | C. Mylona, G. Papaschinopoulos and C. J. Schinas, Stability and flip bifurcation of a three-dimensional exponential system of difference equations, Math. Methods Appl. Sci., 2021, 44(6), 4316–4329. doi: 10.1002/mma.7031 |
[25] | M. Ouyang, Q. Zhang, M. Cai and Z. Zeng, Dynamic analysis of a fuzzy Bobwhite quail population model under g-division law, Scientific Report, 2024, 14, 9682. doi: 10.1038/s41598-024-60178-4 |
[26] | M. Ouyang, Q. Zhang and Z. Chen, Balanced harvesting of dynamical discrete Ricker and Beverton-Holt system, Chaos, Solitons and Fractals, 2023, 170, 113384. doi: 10.1016/j.chaos.2023.113384 |
[27] | G. Papaschinopoulos and B. K. Papadopoulos, On the fuzzy difference equation $x_{n+1}=A+B/x_n$, Soft Comput., 2002, 6, 456–461. doi: 10.1007/s00500-001-0161-7 |
[28] |
G. Papaschinopoulos and B. K. Papadopoulos, On the fuzzy difference equation $x_{n+1}=A+x_n/x_{n-m}$, Fuzzy Sets and Systems, 2002, 129, 73–81. doi: 10.1016/S0165-0114(01)00198-1
CrossRef $x_{n+1}=A+x_n/x_{n-m}$" target="_blank">Google Scholar |
[29] |
G. Papaschinopoulos and C. J. Schinas, On the fuzzy difference equation $x_{n+1}=\sum_{i=0}.{k-1}A_i/x_{n-i}.p_i+1/x_{n-k}.p_k$, J. Difference Equation Appl., 2002, 6, 75–89.
$x_{n+1}=\sum_{i=0}.{k-1}A_i/x_{n-i}.p_i+1/x_{n-k}.p_k$" target="_blank">Google Scholar |
[30] | G. Papaschinopoulos and C. J. Schinas, On a system of two nonlinear difference equations, J. Math. Anal. Appl., 1998, 219, 415–426. |
[31] | G. Papaschinopoulos and G. Stefanidou, Boundedness and asymptotic behavior of the solutions of a fuzzy difference equation, Fuzzy Sets and Systems, 2003, 140, 523–539. |
[32] | M. Parsamanesh and S. Mehrshad, Stability of the equilibria in a discrete-time SIVS epidemic model with standard incidence, Filomat, 2019, 33(8), 2393–2408. |
[33] | G. Stefanidou and G. Papaschinopoulos, A fuzzy difference equation of a rational form, J. Nonlin. Math. Phys., 2005, 12(2), 300–315. |
[34] | G. Stefanidou, G. Papaschinopoulos and C. J. Schinas, On an exponential-type fuzzy difference equation, Advances in Difference Equations, 2010. DOI: 10.1155/2010/196920. |
[35] | L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets and Systems, 2010, 161, 1564–1584. |
[36] | T. Sun, G. Su and B. Qin, On the fuzzy difference equation $x_n=F(x_{n-1}, x_{n-k})$, Fuzzy Sets and Systems, 2020, 387, 81–88. |
[37] | C. Wang and J. Li, Periodic solution for a max-type fuzzy difference equation, Journal of Mathematics, 2020, 3, 1–12. |
[38] | C. Wang, X. Su, P. Liu, X. Hu and R. Li, On the dynamics of a five-order fuzzy difference equation, Journal of Nonlinear Science and Applications, 2017, 10, 3303–3319. |
[39] | L. Xiang, Y. Zhang and J. Huang, Stability analysis of a discrete SIRS epidemic model with vaccination, J. Difer. Equ. Appl., 2020, 26(3), 309–327. |
[40] | I. Yalcnkaya, H. El-Metwally, D. T. Tollu and H. Ahmad, Behavior of solutions to the fuzzy difference equation, Mathematical Notes, 2023, 113(1–2), 292–302. |
[41] |
X. Yang, On the system of rational difference equations $x_n=A+y_{n-1}/x_{n-p}y_{n-q}, y_n=A+x_{n-1}/x_{n-r}y_{n-s}$, J. Math. Anal. Appl., 2005, 307, 305–311.
$x_n=A+y_{n-1}/x_{n-p}y_{n-q}, y_n=A+x_{n-1}/x_{n-r}y_{n-s}$" target="_blank">Google Scholar |
[42] | Q. Zhang, J. Liu and Z. Luo, Dynamical behavior of a third-order rational fuzzy difference equation, Advances in Difference Equations, 2015, 108. DOI: 10.1186/s13662-015-0438-2. |
[43] | Q. Zhang, M. Ouyang, B. Pan and F. Lin, Qualitative analysis of second-order fuzzy difference equation with quadratic term, Journal of Applied Mathematics and Computing, 2023, 69, 1355–1376. |
[44] | Q. Zhang, B. Pan, M. Ouyang and F. Lin, Large time behavior of solution to second-order fractal difference equation with positive fuzzy parameters, Journal of Intelligent and Fuzzy Systems, 2023, 45, 5709–5721. |
[45] | Q. Zhang, L. Yang and D. Liao, Behavior of solutions to a fuzzy nonlinear difference equation, Iranian Journal of Fuzzy Systems, 2012, 9, 1–12. |
[46] | Q. Zhang, L. Yang and D. Liao, On first order fuzzy Ricatti difference equation, Inform. Sci., 2014, 270, 226–236. |
[47] | Q. Zhang, L. Yang and J. Liu, Dynamics of a system of rational third-order difference equation, Advances in Difference Equations, 2012, 2012(136), 1–8. |
[48] | Q. Zhang, W. Zhang, F. Lin and D. Li, On dynamic behavior of second-order exponential-type fuzzy difference equation, Fuzzy Sets and Systems, 2021, 419, 169–187. |
The Dynamics of system (4.7).
The solution of system (4.7) at
The solution of system (4.7) at
The Dynamics of system (4.13).
The solution of system (4.13) at
The solution of system (4.13) at