Citation: | Xinyu Wang, Na Wang. A CLASS OF HIGHER ORDER TURNING POINT NONLINEAR SINGULARLY PERTURBED BOUNDARY VALUE PROBLEM[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 657-690. doi: 10.11948/20240002 |
When a boundary layer occurs close to a turning point in a class of singularly perturbation problems with turning points, the solution manifests as a multi-layer phenomena. This paper provides a systematic solution. It focuses on a class of turning point problems and the aspects include constructing formal asymptotic solutions. It also involves establishing the existence and error estimation of the solutions, the relationship with the position of the intermediate layer and boundary layer. In addition, the numerical verification is conducted as well.
[1] | H. Alzer, Error function inequalities, Advances in Computational Mathematics, 2010, 33(3), 349–379. DOI: 10.1007/s00010-003-2683-9. |
[2] | H. Alzer, On some inequalities for the incomplete gamma function, Mathematics of Computation, 1997, 66(218), 771–778. DOI: 10.1090/S0025-5718-97-00814-4. |
[3] | A. A. Awin, B. W. Sharif and A. M. Awin, On the use of perturbation theory in eigenvalue problems, Journal of Applied Mathematics and Physics, 2021, 9(9), 2224–2243. DOI: 10.4236/jamp.2021.99142. |
[4] | A. Boureghda and N. Djellab, Du fort-frankel finite difference scheme for solving of oxygen diffusion problem inside one cell, Journal of Computational and Theoretical Transport, 2023, 52(5), 363–373. DOI: 10.1080/23324309.2023.2271229. |
[5] | E. V. Buldakov and A. I. Ruban, On transonic viscous–inviscid interaction, Journal of Fluid Mechanics, 2002, 470, 291–317. DOI: 10.1017/S0022112002001982. |
[6] | T. Cebeci, Analysis of Turbulent Boundary Layers, Elsevier, 2012. DOI: 10.1115/1.3423784. |
[7] | K. W. Chang and F. A. Howes, Nonlinear singular perturbation phenomena: Theory and applications, Springer Science and Business Media, 2012, 56. |
[8] | T. Chen, The Shock Solutions for Several Nonlinear Singularly Perturbed Problems, Anhui Normal University, 2011 (in Chinese). |
[9] | A. B. Olde Daalhuis, S. J. Chapman, J. R. King, J. R. Ockendon and R. H. Tew, Stokes phenomenon and matched asymptotic expansions, SIAM Journal on Applied Mathematics, 1995, 55(6), 1469–1483. DOI: 10.1145/1999995.2000000. |
[10] | N. Djellab and A. Boureghda, A moving boundary model for oxygen diffusion in a sick cell, Computer Methods in Biomechanics and Biomedical Engineering, 2022, 25(12), 1402–1408. DOI: 10.1080/10255842.2021.2024168. |
[11] | M. Van Dyke, Perturbation methods in fluid mechanics, Annotated edition. NASA STI/Recon Technical Report A 75, 1975, 46926. |
[12] | W. Eckhaus, Matched Asymptotic Expansions and Singular Perturbations, Elsevier, 2011. DOI: 10.1137/1016103. |
[13] | E. R. El-Zahar, Approximate analytical solutions of singularly perturbed fourth order boundary value problems using differential transform method, Journal of King Saud University - Science, 2013, 25(3), 257–265. DOI: 10.1016/j.jksus.2013.01.004. |
[14] | M. V. Fedoryuk, Asymptotic Analysis: Linear Ordinary Differential Equations, Springer Science & Business Media, 2012. |
[15] | J. H. He and Y. O. El-Dib, Homotopy perturbation method with three expansions, Journal of Mathematical Chemistry, 2021, 59, 1139–1150. DOI: 10.1007/s10910-021-01237-3. |
[16] | F. A. Howes, Singularly perturbed nonlinear boundary value problems with turning points, SIAM Journal on Mathematical Analysis, 1975, 6(4), 644–660. DOI: 10.1137/0506057. |
[17] | F. A. Howes, Singularly perturbed nonlinear boundary value problems with turning points. Ⅱ, SIAM Journal on Mathematical Analysis, 1978, 9(2), 250–271. DOI: 10.1137/0509018. |
[18] | A. M. Il'in, Matching of Asymptotic Expansions of Solution of Boundary Value Problems, Translations of Mathematical Monographs, 1992. |
[19] |
S. Karasulji and H. Ljevakovi, On Construction of A Global Numerical Solution for a Semilinear Singularly–Perturbed Reaction Diffusion Boundary Value Problem, 2020. DOI: |
[20] | J. K. Kevorkian and J. D. Cole, Multiple scale and singular perturbation methods, Springer Science & Business Media, 2012, 114. |
[21] | K. V. Khishchenko and A. E. Mayer, High-and low-entropy layers in solids behind shock and ramp compression waves, International Journal of Mechanical Sciences, 2021, 189, 105971. DOI: 10.1016/j.ijmecsci.2020.105971. |
[22] | P. A. Lagerstrom, Matched asymptotic expansions: Ideas and techniques, Springer Science & Business Media, 2013, 76. |
[23] | T. Lazovskaya, G. Malykhina and D. Tarkhov, Physics-based neural network methods for solving parameterized singular perturbation problem, Computation, 2021, 9(9), 97. DOI: 10.3390/computation9090097. |
[24] |
R. Y. S. Lynn, Uniform Asymptotic Solutions of Second Order Linear Ordinary Differentialequations with Turning Points, New York University, 1968. DOI: |
[25] | F. Mazzia and G. Settanni, Bvps codes for solving optimal control problems, Mathematics, 2021, 9(20), 2618. DOI: 10.3390/math9202618. |
[26] | M. Nagumo, Über die differentialgleichung $y''= (x, y, y')$, Proceedings of the Physico-Mathematical Society of Japan, 3rd Series, 1937, 19, 861–866. |
[27] |
A. H. Nayfeh, Introduction to Perturbation Techniques, John Wiley, Sons, 2011. DOI: |
[28] | A. H. Nayfeh, Triple-deck structure, Computers & Fluids, 1991, 20(3), 269–292. DOI: 10.1016/0045-7930(91)90044-I. |
[29] | J. C. Neu, Singular perturbation in the physical sciences, American Mathematical Soc., 2015, 167. |
[30] | Jr. R. E. O'Malley, On boundary value problems for a singularly perturbed differential equation with a turning point, Siam Journal on Mathematical Analysis, 1970, 1(4), 479–490. DOI: 10.1137/0501041. |
[31] | Jr. R. E. O'Malley, On the Asymptotic Solution of the Singularly Perturbed Boundary Value Problems Posed by Bohé, Journal of Mathematical Analysis and Applications, 2000. DOI: 10.1006/jmaa.1999.6641. |
[32] | L. Prandtl, Uber Flussigkeitsbewegung bei sehr Kleiner Reibung, Verhandl. 3rd Int. Math. Kongr. Heidelberg, 1904. |
[33] | M. Van Der Put, The Stokes phenomenon and some applications, Symmetry Integrability & Geometry Methods & Applications, 2015, 11(11). DOI: 10.3842/SIGMA.2015.036. |
[34] | L. F. Shampine, J. Kierzenka and M. W. Reichelt, Solving Boundary Value Problems for Ordinary Differential Equations in MATLAB with bvp4c, MATLAB File Exchange, 2004. |
[35] | D. R. Smith, Singular-Perturbation Theory: An Introduction with Applications, Cambridge University Press, 1985. |
[36] |
L. N. Trefethen, Eight perspectives on the exponentially ill-conditioned equation $\varepsilon y''-xy'+y=0$, SIAM Review, 2020, 62(2), 439–462. DOI: 10.1137/18M121232X.
CrossRef $\varepsilon y''-xy'+y=0$" target="_blank">Google Scholar |
[37] | D. A. Tursunov, Z. M. Sulaimanov and A. A. Khalmatov, Singularly perturbed ordinary differential equation with turning point and interior layer, Lobachevskii Journal of Mathematics, 2021, 42(12), 3016–3021. DOI: 10.1134/S1995080221120362 |
[38] | A. B. Vasil'Eva, V. F. Butuzov and L. V. Kalachev, The Boundary Function Method for Singular Perturbation Problems, Society for Industrial and Applied Mathematics, 1955. |
The analysis figure of multilayer phenomenon when
Comparison of asymptotic and the numerical solutions when
Comparison of asymptotic and the numerical solutions when
Comparison of asymptotic and the numerical solutions when
Comparison of asymptotic and the numerical solutions when
Comparison of asymptotic and the numerical solutions when
Comparison plot with and without boundary layer terms when
Comparison of asymptotic and the numerical solutions when
Comparison of asymptotic and the numerical solutions when nonlinear and
Comparison of asymptotic and the numerical solutions when nonlinear and
Comparison of asymptotic and the numerical solutions when nonlinear and
Comparison plot with and without boundary layer terms when nonlinear and