2025 Volume 15 Issue 2
Article Contents

Xinyu Wang, Na Wang. A CLASS OF HIGHER ORDER TURNING POINT NONLINEAR SINGULARLY PERTURBED BOUNDARY VALUE PROBLEM[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 657-690. doi: 10.11948/20240002
Citation: Xinyu Wang, Na Wang. A CLASS OF HIGHER ORDER TURNING POINT NONLINEAR SINGULARLY PERTURBED BOUNDARY VALUE PROBLEM[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 657-690. doi: 10.11948/20240002

A CLASS OF HIGHER ORDER TURNING POINT NONLINEAR SINGULARLY PERTURBED BOUNDARY VALUE PROBLEM

  • When a boundary layer occurs close to a turning point in a class of singularly perturbation problems with turning points, the solution manifests as a multi-layer phenomena. This paper provides a systematic solution. It focuses on a class of turning point problems and the aspects include constructing formal asymptotic solutions. It also involves establishing the existence and error estimation of the solutions, the relationship with the position of the intermediate layer and boundary layer. In addition, the numerical verification is conducted as well.

    MSC: 34E15, 34E20, 34B15
  • 加载中
  • [1] H. Alzer, Error function inequalities, Advances in Computational Mathematics, 2010, 33(3), 349–379. DOI: 10.1007/s00010-003-2683-9.

    CrossRef Google Scholar

    [2] H. Alzer, On some inequalities for the incomplete gamma function, Mathematics of Computation, 1997, 66(218), 771–778. DOI: 10.1090/S0025-5718-97-00814-4.

    CrossRef Google Scholar

    [3] A. A. Awin, B. W. Sharif and A. M. Awin, On the use of perturbation theory in eigenvalue problems, Journal of Applied Mathematics and Physics, 2021, 9(9), 2224–2243. DOI: 10.4236/jamp.2021.99142.

    CrossRef Google Scholar

    [4] A. Boureghda and N. Djellab, Du fort-frankel finite difference scheme for solving of oxygen diffusion problem inside one cell, Journal of Computational and Theoretical Transport, 2023, 52(5), 363–373. DOI: 10.1080/23324309.2023.2271229.

    CrossRef Google Scholar

    [5] E. V. Buldakov and A. I. Ruban, On transonic viscous–inviscid interaction, Journal of Fluid Mechanics, 2002, 470, 291–317. DOI: 10.1017/S0022112002001982.

    CrossRef Google Scholar

    [6] T. Cebeci, Analysis of Turbulent Boundary Layers, Elsevier, 2012. DOI: 10.1115/1.3423784.

    CrossRef Google Scholar

    [7] K. W. Chang and F. A. Howes, Nonlinear singular perturbation phenomena: Theory and applications, Springer Science and Business Media, 2012, 56.

    Google Scholar

    [8] T. Chen, The Shock Solutions for Several Nonlinear Singularly Perturbed Problems, Anhui Normal University, 2011 (in Chinese).

    Google Scholar

    [9] A. B. Olde Daalhuis, S. J. Chapman, J. R. King, J. R. Ockendon and R. H. Tew, Stokes phenomenon and matched asymptotic expansions, SIAM Journal on Applied Mathematics, 1995, 55(6), 1469–1483. DOI: 10.1145/1999995.2000000.

    CrossRef Google Scholar

    [10] N. Djellab and A. Boureghda, A moving boundary model for oxygen diffusion in a sick cell, Computer Methods in Biomechanics and Biomedical Engineering, 2022, 25(12), 1402–1408. DOI: 10.1080/10255842.2021.2024168.

    CrossRef Google Scholar

    [11] M. Van Dyke, Perturbation methods in fluid mechanics, Annotated edition. NASA STI/Recon Technical Report A 75, 1975, 46926.

    Google Scholar

    [12] W. Eckhaus, Matched Asymptotic Expansions and Singular Perturbations, Elsevier, 2011. DOI: 10.1137/1016103.

    CrossRef Google Scholar

    [13] E. R. El-Zahar, Approximate analytical solutions of singularly perturbed fourth order boundary value problems using differential transform method, Journal of King Saud University - Science, 2013, 25(3), 257–265. DOI: 10.1016/j.jksus.2013.01.004.

    CrossRef Google Scholar

    [14] M. V. Fedoryuk, Asymptotic Analysis: Linear Ordinary Differential Equations, Springer Science & Business Media, 2012.

    Google Scholar

    [15] J. H. He and Y. O. El-Dib, Homotopy perturbation method with three expansions, Journal of Mathematical Chemistry, 2021, 59, 1139–1150. DOI: 10.1007/s10910-021-01237-3.

    CrossRef Google Scholar

    [16] F. A. Howes, Singularly perturbed nonlinear boundary value problems with turning points, SIAM Journal on Mathematical Analysis, 1975, 6(4), 644–660. DOI: 10.1137/0506057.

    CrossRef Google Scholar

    [17] F. A. Howes, Singularly perturbed nonlinear boundary value problems with turning points. Ⅱ, SIAM Journal on Mathematical Analysis, 1978, 9(2), 250–271. DOI: 10.1137/0509018.

    CrossRef Google Scholar

    [18] A. M. Il'in, Matching of Asymptotic Expansions of Solution of Boundary Value Problems, Translations of Mathematical Monographs, 1992.

    Google Scholar

    [19] S. Karasulji and H. Ljevakovi, On Construction of A Global Numerical Solution for a Semilinear Singularly–Perturbed Reaction Diffusion Boundary Value Problem, 2020. DOI: 10.37560/matbil2020131k.

    Google Scholar

    [20] J. K. Kevorkian and J. D. Cole, Multiple scale and singular perturbation methods, Springer Science & Business Media, 2012, 114.

    Google Scholar

    [21] K. V. Khishchenko and A. E. Mayer, High-and low-entropy layers in solids behind shock and ramp compression waves, International Journal of Mechanical Sciences, 2021, 189, 105971. DOI: 10.1016/j.ijmecsci.2020.105971.

    CrossRef Google Scholar

    [22] P. A. Lagerstrom, Matched asymptotic expansions: Ideas and techniques, Springer Science & Business Media, 2013, 76.

    Google Scholar

    [23] T. Lazovskaya, G. Malykhina and D. Tarkhov, Physics-based neural network methods for solving parameterized singular perturbation problem, Computation, 2021, 9(9), 97. DOI: 10.3390/computation9090097.

    CrossRef Google Scholar

    [24] R. Y. S. Lynn, Uniform Asymptotic Solutions of Second Order Linear Ordinary Differentialequations with Turning Points, New York University, 1968. DOI: 10.1002/cpa.3160230310.

    Google Scholar

    [25] F. Mazzia and G. Settanni, Bvps codes for solving optimal control problems, Mathematics, 2021, 9(20), 2618. DOI: 10.3390/math9202618.

    CrossRef Google Scholar

    [26] M. Nagumo, Über die differentialgleichung $y''= (x, y, y')$, Proceedings of the Physico-Mathematical Society of Japan, 3rd Series, 1937, 19, 861–866.

    Google Scholar

    [27] A. H. Nayfeh, Introduction to Perturbation Techniques, John Wiley, Sons, 2011. DOI: 10.1063/1.1724310.

    Google Scholar

    [28] A. H. Nayfeh, Triple-deck structure, Computers & Fluids, 1991, 20(3), 269–292. DOI: 10.1016/0045-7930(91)90044-I.

    CrossRef Google Scholar

    [29] J. C. Neu, Singular perturbation in the physical sciences, American Mathematical Soc., 2015, 167.

    Google Scholar

    [30] Jr. R. E. O'Malley, On boundary value problems for a singularly perturbed differential equation with a turning point, Siam Journal on Mathematical Analysis, 1970, 1(4), 479–490. DOI: 10.1137/0501041.

    CrossRef Google Scholar

    [31] Jr. R. E. O'Malley, On the Asymptotic Solution of the Singularly Perturbed Boundary Value Problems Posed by Bohé, Journal of Mathematical Analysis and Applications, 2000. DOI: 10.1006/jmaa.1999.6641.

    CrossRef Google Scholar

    [32] L. Prandtl, Uber Flussigkeitsbewegung bei sehr Kleiner Reibung, Verhandl. 3rd Int. Math. Kongr. Heidelberg, 1904.

    Google Scholar

    [33] M. Van Der Put, The Stokes phenomenon and some applications, Symmetry Integrability & Geometry Methods & Applications, 2015, 11(11). DOI: 10.3842/SIGMA.2015.036.

    CrossRef Google Scholar

    [34] L. F. Shampine, J. Kierzenka and M. W. Reichelt, Solving Boundary Value Problems for Ordinary Differential Equations in MATLAB with bvp4c, MATLAB File Exchange, 2004.

    Google Scholar

    [35] D. R. Smith, Singular-Perturbation Theory: An Introduction with Applications, Cambridge University Press, 1985.

    Google Scholar

    [36] L. N. Trefethen, Eight perspectives on the exponentially ill-conditioned equation $\varepsilon y''-xy'+y=0$, SIAM Review, 2020, 62(2), 439–462. DOI: 10.1137/18M121232X.

    CrossRef $\varepsilon y''-xy'+y=0$" target="_blank">Google Scholar

    [37] D. A. Tursunov, Z. M. Sulaimanov and A. A. Khalmatov, Singularly perturbed ordinary differential equation with turning point and interior layer, Lobachevskii Journal of Mathematics, 2021, 42(12), 3016–3021. DOI: 10.1134/S1995080221120362

    CrossRef Google Scholar

    [38] A. B. Vasil'Eva, V. F. Butuzov and L. V. Kalachev, The Boundary Function Method for Singular Perturbation Problems, Society for Industrial and Applied Mathematics, 1955.

    Google Scholar

Figures(12)

Article Metrics

Article views(475) PDF downloads(228) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint