Citation: | Yirong Zheng, Hongzhang Chen, Long Jin. ORDERING GRAPHS WITH FIXED SIZE AND GIRTH BY THEIR $A_{\alpha}$-SPECTRAL RADIUS[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 691-704. doi: 10.11948/20240091 |
For a graph $G$ and real number $\alpha\in [0, 1]$, the $A_\alpha$-spectral radius of $G$ is the largest eigenvalue of $A_\alpha(G):=\alpha D(G)+(1-\alpha) A(G)$, where $A(G)$ and $D(G)$ are the adjacency matrix and the diagonal degree matrix of $G$, respectively. Recently, for $\alpha\in [\frac{1}{2}, 1]$, Chen, Li and Huang [Discrete Appl. Math., 2023, 340, 350–362], as well as Ye, Guo and Zhang [Discrete Appl. Math., 2024, 342, 286–294] independently identified the graph with maximum $A_{\alpha}$-spectral radius among all graphs in $\mathcal{G}(m, g)$, the class of connected graphs on $m$ edges with girth $g$. In this paper, we further determine the second to the $\big(\lfloor\frac{g}{2} \rfloor+2 \big)$th largest $A_{\alpha}$-spectral radius of graphs in $\mathcal{G}(m, g)$. Moreover, for $\alpha\in [\frac{1}{2}, 1]$, we also determine the first to the $\big(\lfloor\frac{g}{2} \rfloor+3 \big)$th largest $A_{\alpha}$-spectral radius of graphs in $\mathcal{G}(m, \geq g)$, the class of connected graphs on $m$ edges with girth no less than $g$, which generalizes the recent result of Hu, Lou and Huang (2022) on $\alpha=\frac{1}{2}$.
[1] |
J. Byrne, D. Desai and M. Tait, A general theorem in spectral extremal graph theory, 2024. |
[2] |
H. Chen, J. Li and P. Huang, On the $A_{\alpha}$-spectral radius of graphs with given size, Discrete Appl. Math., 2023, 340, 350–362. doi: 10.1016/j.dam.2023.07.026
CrossRef $A_{\alpha}$-spectral radius of graphs with given size" target="_blank">Google Scholar |
[3] |
H. Chen, J. Li and P. Huang, Bounding the $A_{\alpha}$-spectral radius of $k$-connected irregular graphs, Rocky Mountain J. Math., 2024, 54, 227–234.
$A_{\alpha}$-spectral radius of |
[4] | W. Chen, B. Wang and M. Zhai, Signless Laplacian spectral radius of graphs without short cycles or long cycles, Linear Algebra Appl., 2022, 645, 123–136. doi: 10.1016/j.laa.2022.03.011 |
[5] | D. Cvetković, M. Doob, I. Gutman and A. Torga$\tilde{s}$ev, Recent Results in the Theory of Graph Spetra, Ann. Discrete Math., 36, North-Holland, 1988. |
[6] |
J. Das and I. Mahato, On the maximum $A_{\alpha}$–spectral radius of unicyclic and bicyclic graphs with fixed girth or fixed number of pendant vertices, 2023. |
[7] | D. Desai, Spectral Turán problems for intersecting even cycles, Linear Algebra Appl., 2024, 683, 46–70. doi: 10.1016/j.laa.2023.11.018 |
[8] |
Y. Hu, Z. Lou and Q. Huang, Ordering $Q$-indices of graphs: Given size and girth, 2022. |
[9] |
Y. Hu, Z. Lou and Q. Huang, Ordering $Q$-indices of graphs: Given size and circumference, Discrete Math., 2023, 346, 113628. doi: 10.1016/j.disc.2023.113628
CrossRef $Q$-indices of graphs: Given size and circumference" target="_blank">Google Scholar |
[10] |
P. Huang, J. Li and W. C. Shiu, Maximizing the $A_{\alpha}$-spectral radius of graphs with given size and diameter, Linear Algebra Appl., 2022, 651, 116–130. doi: 10.1016/j.laa.2022.06.020
CrossRef $A_{\alpha}$-spectral radius of graphs with given size and diameter" target="_blank">Google Scholar |
[11] |
H. Jia, S. Li and S. Wang, Ordering the maxima of $L$–index and $Q$–index: Graphs with given size and diameter, Linear Algebra Appl., 2022, 652, 18–36. doi: 10.1016/j.laa.2022.06.028
CrossRef $L$–index and |
[12] | D. Li, Y. Chen and J. Meng, The $A_{\alpha}$–spectral radius of trees and unicyclic graphs with given degree sequence, Appl. Math. Comput., 2019, 363, 124622. |
[13] |
Z. Lou, J.-M. Guo and Z. Wang, Maxima of $L$-index and $Q$-index: Graphs with given size and diameter, Discrete Math., 2021, 344, 112533. doi: 10.1016/j.disc.2021.112533
CrossRef $L$-index and |
[14] |
V. Nikiforov, Merging the $A$- and $Q$-spectral theories, Appl. Anal. Discr. Math., 2016, 11, 81–107.
$A$- and |
[15] |
O. Rojo, The maximal $\alpha$–index of trees with $k$ pendent vertices and its computation, Electron. J. Linear Algebra, 2020, 36, 38–46. doi: 10.13001/ela.2020.5065
CrossRef $\alpha$–index of trees with |
[16] |
S. Wang, D. Wong and F. Tian, Bounds for the largest and the smallest $A_{\alpha}$ eigenvalues of a graph in terms of vertex degrees, Linear Algebra Appl., 2020, 590, 210–223. doi: 10.1016/j.laa.2019.12.039
CrossRef $A_{\alpha}$ eigenvalues of a graph in terms of vertex degrees" target="_blank">Google Scholar |
[17] |
J. Xue, H. Lin, S. Liu and J. Shu, On the $A_{\alpha}$-spectral radius of a graph, Linear Algebra Appl., 2018, 550, 105–120. doi: 10.1016/j.laa.2018.03.038
CrossRef $A_{\alpha}$-spectral radius of a graph" target="_blank">Google Scholar |
[18] |
A. Ye, S.-G. Guo and R. Zhang, Some extremal problems on $A_{\alpha}$-spectral radius of graphs with given size, Discrete Appl. Math., 2024, 342, 286–294. doi: 10.1016/j.dam.2023.09.024
CrossRef $A_{\alpha}$-spectral radius of graphs with given size" target="_blank">Google Scholar |
[19] | L. You, M. Yang, W. So and W. Xi, On the spectrum of an equitable quotient matrix and its application, Linear Algebra Appl., 2019, 577, 21–40. doi: 10.1016/j.laa.2019.04.013 |
The graphs
The graphs
The graphs
The graphs