2025 Volume 15 Issue 2
Article Contents

Yanhua Zhu, You Li, Xiangyi Ma, Ying Sun, Ziwei Wang, Jinliang Wang. BIFURCATION AND TURING PATTERN ANALYSIS FOR A SPATIOTEMPORAL DISCRETE DEPLETION TYPE GIERER-MEINHARDT MODEL WITH SELF-DIFFUSION AND CROSS-DIFFUSION[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 705-733. doi: 10.11948/20240098
Citation: Yanhua Zhu, You Li, Xiangyi Ma, Ying Sun, Ziwei Wang, Jinliang Wang. BIFURCATION AND TURING PATTERN ANALYSIS FOR A SPATIOTEMPORAL DISCRETE DEPLETION TYPE GIERER-MEINHARDT MODEL WITH SELF-DIFFUSION AND CROSS-DIFFUSION[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 705-733. doi: 10.11948/20240098

BIFURCATION AND TURING PATTERN ANALYSIS FOR A SPATIOTEMPORAL DISCRETE DEPLETION TYPE GIERER-MEINHARDT MODEL WITH SELF-DIFFUSION AND CROSS-DIFFUSION

  • This paper presents a study on spatiotemporal dynamics and Turing patterns in a space-time discrete depletion type Gierer-Meinhardt model with self-diffusion and cross-diffusion based on coupled map lattices (CMLs) model. Initially, the existence and stability conditions for fixed points are determined through linear stability analysis. Secondly, the conditions for the occurrence of flip bifurcation, Neimark–Sacker bifurcation, and Turing bifurcation are derived by means of the center manifold reduction theorem and bifurcation theory. The results indicate that there exist two nonlinear mechanisms, namely flip-Turing instability and Neimark–Sacker-Turing instability. Additionally, some numerical simulations are performed to illustrate the theoretical findings. Interestingly, a rich variety of dynamical behaviors, including period-doubling cascades, invariant circles, periodic windows, chaotic regions, and striking pattern formations (plaques, mosaics, curls, spirals, and other intermediate patterns), are observed. Finally, the evolution of pattern size and type is also simulated as the cross-diffusion coefficient varies. It reveals that cross-diffusion has a certain influence on the growth of patterns.

    MSC: 35B32, 35K57, 37G05
  • 加载中
  • [1] W. Abid, R. Yafia, M. A. Aziz-Alaoui, H. Bouhafa and A. Abichou, Diffusion driven instability and Hopf bifurcation in spatial predator-prey model on a circular domain, Applied Mathematics and Computation, 2015, 260, 292–313. doi: 10.1016/j.amc.2015.03.070

    CrossRef Google Scholar

    [2] L. Bai and G. Zhang, Nontrivial solutions for a nonlinear discrete elliptic equation with periodic boundary conditions, Applied Mathematics and Computation, 2009, 210(2), 321–333. doi: 10.1016/j.amc.2008.12.024

    CrossRef Google Scholar

    [3] M. Banerjee, Comments on "L. N. Guin, M. Haque and P. K. Mandal, The spatial patterns through diffusion-driven instability in a predator-prey model, Applied Mathematical Modelling, 2012, 36, 1825-1841. ", Applied Mathematical Modelling, 2015, 39(1), 297–299. doi: 10.1016/j.apm.2014.04.058

    CrossRef Google Scholar

    [4] M. Bendahmane, R. Ruiz-Baier and C. Tian, Turing pattern dynamics and adaptive discretization for a super-diffusive Lotka-Volterra model, Journal of Mathematical Biology, 2016, 72(6), 1441–1465. doi: 10.1007/s00285-015-0917-9

    CrossRef Google Scholar

    [5] J. Buceta and K. Lindenberg, Switching-induced Turing instability, Physical Review E, 2002, 66(4), 046202. doi: 10.1103/PhysRevE.66.046202

    CrossRef Google Scholar

    [6] Y. Cai, C. Zhao and W. Wang, Spatiotemporal complexity of a Leslie-Gower predator-prey model with the weak Allee effect, Journal of Applied Mathematics, 2013. DOI: 10.1155/2013/535746.

    CrossRef Google Scholar

    [7] C. Castellano, S. Fortunato and V. Loreto, Statistical physics of social dynamics, Reviews of Modern Physics, 2007, 81(2), 591–646.

    Google Scholar

    [8] C. Castellano, H. Zhang and L. Dai, Regular and irregular vegetation pattern formation in semiarid regions: A study on discrete klausmeier model, Complexity, 2020, 2020, 2498073.

    Google Scholar

    [9] L. Chang, G. Sun, Z. Wang and Z. Jin, Rich dynamics in a spatial predator-prey model with delay, Applied Mathematics and Computation, 2015, 256, 540–550. doi: 10.1016/j.amc.2015.01.052

    CrossRef Google Scholar

    [10] M. Chen and Q. Zheng, Predator-taxis creates spatial pattern of a predator-prey model, Chaos Solitons & Fractals, 2022, 161, 112332.

    Google Scholar

    [11] G. Domokos and I. Scheuring, Discrete and continuous state population models in a noisy world, Journal of Theoretical Biology, 2004, 227(4), 535–545. doi: 10.1016/j.jtbi.2003.08.017

    CrossRef Google Scholar

    [12] S. Getzin, T. E. Erickson, H. Yizhaq, M. Muñoz-Rojas, A. Huth and K. Wiegand, Bridging ecology and physics: Australian fairy circles regenerate following model assumptions on ecohydrological feedbacks, Journal of Ecology, 2021, 109(1), 399–416. doi: 10.1111/1365-2745.13493

    CrossRef Google Scholar

    [13] A. Gierer and H. Meinhardt, Stripe and spot patterns in a gierer-meinhardt activator-inhibitor model with different sources, Kybernetik, 1972, 12(1), 30–39. doi: 10.1007/BF00289234

    CrossRef Google Scholar

    [14] L. Gu, P. Gong and H. Wang, Bifurcation and Turing instability analysis for the Gierer-Meinhardt model of the depletion type, Discrete Dynamics in Nature and Society, 2020, 2020, 5293748.

    Google Scholar

    [15] J. Guckenheimer and P. Holms, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983.

    Google Scholar

    [16] O. Hammer and H. Bucher, Reaction-diffusion processes: Application to the morphogenesis of ammonoid ornamentation, Physical Review E, 1999, 32(6), 841–852.

    Google Scholar

    [17] R. Han and B. Dai, Spatiotemporal pattern formation and selection induced by nonlinear cross-diffusion in a toxic-phytoplankton-zooplankton model with Allee effect, Nonlinear Analysis-Real World Applications, 2019, 45, 822–853. doi: 10.1016/j.nonrwa.2018.05.018

    CrossRef Google Scholar

    [18] R. Han, L. N. Guin and B. Dai, Cross-diffusion-driven pattern formation and selection in a modified Leslie-Gower predator-prey model with fear effect, Journal of Biological Systems, 2020, 28(1), 27–64. doi: 10.1142/S0218339020500023

    CrossRef Google Scholar

    [19] H. He, M. Xiao, J. He and W. Zheng, Regulating spatiotemporal dynamics for a delay Gierer-Meinhardt model, Physica A-Statistical Mechanics and its Applications, 2024, 637, 129603. doi: 10.1016/j.physa.2024.129603

    CrossRef Google Scholar

    [20] T. Huang and H. Zhang, Bifurcation, chaos and pattern formation in a space-and time-discrete predator-prey system, Chaos Solitons & Fractals, 2016, 91, 92–107.

    Google Scholar

    [21] T. Huang, H. Zhang and H. Yang, Spatiotemporal complexity of a discrete space-time predator-prey system with self- and cross-diffusion, Applied Mathematicak Modelling, 2017, 47, 637–655. doi: 10.1016/j.apm.2017.03.049

    CrossRef Google Scholar

    [22] Z. Jing and J. Yang, Bifurcation and chaos in discrete-time predator-prey system, Chaos Solitons & Fractals, 2006, 27(1), 259–277.

    Google Scholar

    [23] Y. Li, J. Wang and X. Hou, Stripe and spot patterns for the Gierer-Meinhardt model with saturated activator production, Journal of Mathematical Analysis and Applications, 2017, 449(2), 1863–1879. doi: 10.1016/j.jmaa.2017.01.019

    CrossRef Google Scholar

    [24] B. Liu, R. Wu and L. Chen, Turing-Hopf bifurcation analysis in a superdiffusive predator-prey model, Chaos, 2018, 28(11), 1–10.

    Google Scholar

    [25] B. Liu, R. Wu, N. Iqbal and L. Chen, Turing patterns in the Lengyel-Epstein system with superdiffusion, International Journal of Bifurcation and Chaos, 2017, 27(8), 1–17.

    Google Scholar

    [26] J. Liu, F. Yi and J. Wei, Multiple bifurcation analysis and spatiotemporal patterns in a 1-D Gierer-Meinhardt model of morphogenesis, International Journal of Bifurcation and Chaos, 2010, 20(4), 1007–1025. doi: 10.1142/S0218127410026289

    CrossRef Google Scholar

    [27] X. Liu and D. Xiao, Complex dynamic behaviors of a discrete-time predator-prey system, Chaos Solitons & Fractals, 2007, 32(1), 80–94.

    Google Scholar

    [28] F. Mai, L. Qin and G. Zhang, Turing instability for a semi-discrete Gierer-Meinhardt system, Physica A-Statistical Mechanics and Its Applications, 2012, 391(5), 2014–2022. doi: 10.1016/j.physa.2011.11.034

    CrossRef Google Scholar

    [29] H. Meinhardt and M. Klingler, A model for pattern formation on the shells of molluscs, Journal of Theoretical Biology, 1987, 126(1), 63–89. doi: 10.1016/S0022-5193(87)80101-7

    CrossRef Google Scholar

    [30] D. Mistro, L. Rodrigues and S. Petrovskii, Spatiotemporal complexity of biological invasion in a space- and time discrete predator-prey system with strong Allee effect, Ecological Complexity, 2012, 9, 16–32. doi: 10.1016/j.ecocom.2011.11.004

    CrossRef Google Scholar

    [31] A. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods, Wiley, Weinheim, 1995.

    Google Scholar

    [32] K. M. Owolabi and A. Atangana, Numerical simulation of noninteger order system in subdiffusive, diffusive, and superdiffusive scenarios, Journal of Computational and Nonlinear Dynamics, 2017, 12(3), 031010. doi: 10.1115/1.4035195

    CrossRef Google Scholar

    [33] M. Perc and P. Grigolini, Collective behavior and evolutionary games-an introduction, Chaos Solitons & Fractals, 2013, 56, 1–5.

    Google Scholar

    [34] D. Punithan, D. K. Kim and R. I. McKay, Spatio-temporal dynamics and quantification of daisyworld in two dimensional coupled map lattices, Ecological Complexity, 2012, 12, 43–57. doi: 10.1016/j.ecocom.2012.09.004

    CrossRef Google Scholar

    [35] L. Rodrigues, D. Mistro and S. Petrovskii, Pattern formation in a space- and time-discrete predator-prey system with a strong allee effect, Theoretical Ecology, 2012, 5(3), 341–362. doi: 10.1007/s12080-011-0139-8

    CrossRef Google Scholar

    [36] S. Ruan, Diffusion–driven instability in the Gierer-Meinhardt model of morphogenesis, Natural Resource Modeling, 1998, 311(2), 131–141.

    Google Scholar

    [37] X. Tang and Y. Song, Cross-diffusion induced spatiotemporal patterns in a predator–prey model with herd behavior, Nonlinear Analysis-Real World Applications, 2015, 24, 36–49. doi: 10.1016/j.nonrwa.2014.12.006

    CrossRef Google Scholar

    [38] A. M. Turing, The chemical basis of morphogenesis, Bulletin of Mathematical Biology, 1952, 237, 37–72.

    Google Scholar

    [39] H. Wang and P. Liu, Pattern dynamics of a predator-prey system with cross-diffusion, Allee effect and generalized Holling Ⅳ functional response, Chaos Solitons & Fractals, 2023, 171, 113456.

    Google Scholar

    [40] J. Wang, X. Hou, Y. Li and Z. Jing, Stripe and spot patterns in a gierer-meinhardt activator-inhibitor model with different sources, International Journal of Bifurcation and Chaos, 2015, 25(8), 1550108. doi: 10.1142/S0218127415501084

    CrossRef Google Scholar

    [41] J. Wang, Y. Li, S. Zhong and X. Hou, Analysis of bifurcation, chaos and pattern formation in a discrete time and space Gierer Meinhardt system, Chaos Solitons & Fractals, 2019, 118, 1–17.

    Google Scholar

    [42] M. J. Ward and J. Wei, Hopf bifurcations and oscillatory instabilities of spike solutions for the one-dimensional Gierer-Meinhardt model, Journal of Ninlinear Science, 2003, 13(2), 209–264.

    Google Scholar

    [43] J. Wei and M. Winter, On the two-dimensional Gierer-Meinhardt system with strong coupling, SIAM Journal on Mathematical Analysis, 1999, 30(6), 1241–1263. doi: 10.1137/S0036141098347237

    CrossRef Google Scholar

    [44] R. Wu and L. Yang, Bogdanov-Takens bifurcation of codimension 3 in the Gierer-Meinhardt model, International Journal of Bifurcation and Chaos, 2023, 33(14), 2350163. doi: 10.1142/S0218127423501638

    CrossRef Google Scholar

    [45] R. Wu, Y. Zhou, Y. Shao and L. Chen, Bifurcation and Turing patterns of reaction-diffusion activator-inhibitor model, Physica A-Statistical Mechanics and Its Applications, 2017, 482, 597–610. doi: 10.1016/j.physa.2017.04.053

    CrossRef Google Scholar

    [46] R. Yang, Cross-diffusion induced spatiotemporal patterns in Schnakenberg reaction-diffusion model, Nonlinear Dynamical, 2020, 110(2), 1753–1766.

    Google Scholar

    [47] R. Yang and X. Yu, Turing-Hopf bifurcation in diffusive Gierer-Meinhardt model, International Journal of Bifurcation and Chaos, 2022, 32(05), 2250046.

    Google Scholar

    [48] F. Yi, J. Wei and J. Shi, Diffusion-driven instability and bifurcation in the Lengyel-Epstein system, Nonlinear Analysis-Real World Applications, 2008, 9(3), 1038–1051. doi: 10.1016/j.nonrwa.2007.02.005

    CrossRef Google Scholar

    [49] Q. Zheng, J. Shen, V. Pandey, L. Guan and Y. Guo, Turing instability in a network-organized epidemic model with delay, Chaos Solitons & Fractals, 2023, 168, 113205.

    Google Scholar

    [50] Q. Zheng, J. Shen, Y. Xu, V. Pandey and L. Guan, Pattern mechanism in stochastic SIR networks with ER connectivity, Physica A-Statistical Mechanics and its Applications, 2022, 603, 127765. doi: 10.1016/j.physa.2022.127765

    CrossRef Google Scholar

    [51] S. Zhong, J. Wang, J. Bao, Y. Li and N. Jiang, Spatiotemporal complexity analysis for a space-time discrete generalized toxic phytoplankton-zooplankton model with self-diffusion and cross-diffusion, International Journal of Bifurcation and Chaos, 2021, 31(1), 2150006. doi: 10.1142/S0218127421500061

    CrossRef Google Scholar

    [52] S. Zhong, J. Wang, Y. Li and N. Jiang, Bifurcation, chaos and Turing instability analysis for a space-time discrete Toxic Phytoplankton-Zooplankton model with self-diffusion, International Journal of Bifurcation and Chaos, 2021, 29(13), 1950184.

    Google Scholar

Figures(13)

Article Metrics

Article views(470) PDF downloads(244) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint