2025 Volume 15 Issue 2
Article Contents

Yong Yao, Jun He. BIFURCATIONS OF CODIMENSION THREE IN A LESLIE-GOWER TYPE PREDATOR-PREY SYSTEM WITH HERD BEHAVIOR AND PREDATOR HARVESTING[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 734-761. doi: 10.11948/20240107
Citation: Yong Yao, Jun He. BIFURCATIONS OF CODIMENSION THREE IN A LESLIE-GOWER TYPE PREDATOR-PREY SYSTEM WITH HERD BEHAVIOR AND PREDATOR HARVESTING[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 734-761. doi: 10.11948/20240107

BIFURCATIONS OF CODIMENSION THREE IN A LESLIE-GOWER TYPE PREDATOR-PREY SYSTEM WITH HERD BEHAVIOR AND PREDATOR HARVESTING

  • Author Bio: Email: hejun666gnmd@163.com(J. He)
  • Corresponding author: Email: mathyaoyong@163.com(Y. Yao) 
  • Fund Project: The first author was supported by National Natural Science Foundation of China (12101470) and Science Foundation of Wuhan Institute of Technology (K2021077)
  • A Leslie-Gower type predator-prey system with herd behavior in prey and constant harvesting in predators is considered in this paper. It is shown that there are two non-hyperbolic equilibria, one is a nilpotent cusp of codimension at most three and the other one is a weak focus of multiplicity also at most three. A complete analysis on bifurcations with codimension three is given as the bifurcation parameters vary, which includes a Bogdanov-Takens bifurcation of codimension three and a degenerate Hopf bifurcation of codimension three. The results indicate that the Leslie-Gower type system exhibits richer bifurcations than the classic Leslie-Gower model and also reveal the complexity of the interaction between the prey, predators and humans.

    MSC: 34C23, 92D25
  • 加载中
  • [1] V. Ajraldi, M. Pittavino and E. Venturino, Modeling herd behavior in population systems, Nonlinear Anal.-Real, 2011, 12(4), 2319–2338. doi: 10.1016/j.nonrwa.2011.02.002

    CrossRef Google Scholar

    [2] M. J. Álvarez, A. Ferragut and X. Jarque, A survey on the blow up technique, Int. J. Bifurcat. Chaos, 2011, 21(11), 3103–3118. doi: 10.1142/S0218127411030416

    CrossRef Google Scholar

    [3] P. A. Braza, Predator-prey dynamics with square root functional responses, Nonlinear Anal.-Real, 2012, 13(4), 1837–1843. doi: 10.1016/j.nonrwa.2011.12.014

    CrossRef Google Scholar

    [4] X. Chen and W. Zhang, Decomposition of algebraic sets and applications to weak centers of cubic systems, J. Comput. Appl. Math., 2009, 232(2), 565–581. doi: 10.1016/j.cam.2009.06.029

    CrossRef Google Scholar

    [5] S. N. Chow, C. Li and D. Wang, Normal Forms and Bifurcations of Plannar Vector Fields, Cambridge University Press, Cambridge, 1994.

    Google Scholar

    [6] F. Dumortier, R. Roussarie and J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part, the cusp case of codimension 3, Ergod. Theor. Dyn. Syst., 1987, 7(3), 375–413. doi: 10.1017/S0143385700004119

    CrossRef Google Scholar

    [7] I. M. Gelfand, M. M. Kapranov and A. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Boston, 1994.

    Google Scholar

    [8] E. González-Olivares, V. Rivera-Estay, A. Rojas-Palma and K. Vilches-Ponce, A leslie-gower type predator-prey model considering herd behavior, Ric. Mat., 2022, 1–24.

    Google Scholar

    [9] M. He and Z. Li, Global dynamics of a Leslie-Gower predator-prey model with square root response function, Appl. Math. Lett., 2023, 140, 108561. doi: 10.1016/j.aml.2022.108561

    CrossRef Google Scholar

    [10] S. B. Hsu and T. W. Hwang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 1995, 55(3), 763–783. doi: 10.1137/S0036139993253201

    CrossRef Google Scholar

    [11] D. Hu, Y. Zhang, Z. Zheng and M. Liu, Dynamics of a delayed predator-prey model with constant-yield prey harvesting, J. Appl. Anal. Comput., 2022, 12(1), 302–335.

    Google Scholar

    [12] J. Huang, Y. Gong and S. Ruan, Bifurcation analysis in a predator-prey model with constant-yield predator harvesting, Discrete Cont. Dyn.-B, 2013, 18(8), 2101–2121.

    Google Scholar

    [13] J. Huang, S. Liu, S. Ruan and X. Zhang, Bogdanov-Tankens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting, Commun. Pur. Appl. Anal., 2016, 15(3), 1041–1055. doi: 10.3934/cpaa.2016.15.1041

    CrossRef Google Scholar

    [14] H. Jiang and X. Tang, Hopf bifurcation in a diffusive predator-prey model with herd behavior and prey harvesting, J. Appl. Anal. Comput., 2019, 9(2), 671–690.

    Google Scholar

    [15] A. Korobeinikov, A Lyapunov function for Leslie-Gower predator-prey models, Appl. Math. Lett., 2001, 14(6), 697–699. doi: 10.1016/S0893-9659(01)80029-X

    CrossRef Google Scholar

    [16] Y. Lamontagne, C. Coutu and C. Rousseau, Bifurcation analysis of a predator-prey system with generalized Holling type III functional response, J. Dyn. Differ. Equ., 2008, 20(3), 535–571. doi: 10.1007/s10884-008-9102-9

    CrossRef Google Scholar

    [17] C. Li, J. Li and Z. Ma, Codimension 3 B-T bifurcation in an epidemic model with a nonlinear incidence, Discrete Cont. Dyn.-B, 2015, 20(4), 1107–1116. doi: 10.3934/dcdsb.2015.20.1107

    CrossRef Google Scholar

    [18] J. Luo and Y. Zhao, Stability and bifurcation analysis in a predator-prey system with constant harvesting and prey group defense, Int. J. Bifurcat. Chaos, 2017, 27(11), 1750179. doi: 10.1142/S0218127417501796

    CrossRef Google Scholar

    [19] M. G. Mortuja, M. K. Chaube and S. Kumar, Dynamic analysis of a predator-prey system with nonlinear prey harvesting and square root functional response, Chaos, Soliton. Fract., 2021, 148, 111071. doi: 10.1016/j.chaos.2021.111071

    CrossRef Google Scholar

    [20] M. G. Mortuja, M. K. Chaube and S. Kumar, Dynamic analysis of a modified Leslie-Gower model with nonlinear prey harvesting and prey herd behavior, Phys. Scripta, 2023, 98(12), 125216. doi: 10.1088/1402-4896/ad086b

    CrossRef Google Scholar

    [21] S. Ruan and D. Xiao, Imperfect and BogdanovšCTakens bifurcations in biological models: from harvesting of species to isolation of infectives, J. Math. Biol., 2023, 87(1), 17. doi: 10.1007/s00285-023-01951-3

    CrossRef Google Scholar

    [22] Shivam, K. Singh, M. Kumar, R. Dubey and T. Singh, Untangling role of cooperative hunting among predators and herd behavior in prey with a dynamical systems approach, Chaos, Soliton. Fract., 2022, 162, 112420. doi: 10.1016/j.chaos.2022.112420

    CrossRef Google Scholar

    [23] F. Winkler, Polynomial Algorithms in Computer Algebra, Springer, New York, 1996.

    Google Scholar

    [24] C. Xiang, M. Lu and J. Huang, Degenerate Bogdanov-Takens bifurcation of codimension 4 in Holling-Tanner model with harvesting, J. Differ. Equations, 2022, 314, 370–417. doi: 10.1016/j.jde.2022.01.016

    CrossRef Google Scholar

    [25] D. Xiao and L. Jennings, Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM J. Appl. Math., 2005, 65(3), 737–753. doi: 10.1137/S0036139903428719

    CrossRef Google Scholar

    [26] D. Xiao, W. Li and M. Han, Dynamics in a ratio-dependent predator-prey model with predator harvesting, J. Math. Anal. Appl., 2006, 324(1), 14–29. doi: 10.1016/j.jmaa.2005.11.048

    CrossRef Google Scholar

    [27] Y. Xu, Y. Yang, F. Meng and S. Ruan, Degenerate codimension-2 cusp of limit cycles in a Holling-Tanner model with harvesting and anti-predator behavior, Nonlinear Anal.-Real, 2024, 76, 103995. doi: 10.1016/j.nonrwa.2023.103995

    CrossRef Google Scholar

    [28] L. Yang, Recent advances on determining the number of real roots of parametric polynomials, J. Symb. Comput., 1999, 28(1–2), 225–242. doi: 10.1006/jsco.1998.0274

    CrossRef Google Scholar

    [29] Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, American Mathematical Society, Providence, RI, 1992.

    Google Scholar

Figures(4)

Article Metrics

Article views(396) PDF downloads(216) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint