Citation: | Yifan Xing, Hong-Xu Li. GLOBAL DYNAMICS OF A REACTION-DIFFUSION SEIVQR EPIDEMIC MODEL IN ALMOST PERIODIC ENVIRONMENTS[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 762-785. doi: 10.11948/20240121 |
We have formulated an almost periodic reaction-diffusion SEIVQR epidemic model that incorporates quarantine, vaccination, and a latent period. In contrast to prior methods that analyze stability by using Lyapunov functions, we establish the global threshold dynamics of this model by using the upper Lyapunov exponent $\lambda^*$. Our results demonstrate that the disease-free almost periodic equilibrium is globally asymptotically stable if $\lambda^*<0$, whereas the disease uniformly persists if $\lambda^*>0$. To further validate our conclusions, we conducted numerical simulations of the model.
[1] | N. Alikakos, An application of the invariance principle to reaction-diffusion equations, J. Differ. Equ., 1979, 33(2), 201–225. doi: 10.1016/0022-0396(79)90088-3 |
[2] | C. Angstmann, B. Henry and A. Mcgann, A fractional order recovery SIR model from a stochastic process, Bull. Math. Biol., 2016, 78(3), 468–499. doi: 10.1007/s11538-016-0151-7 |
[3] | M. Baniyaghoub, R. Gautam, Z. Shuai, et al., Reproduction numbers for infections with free-living pathogens growing in the environment, Discrete Dyn. Nat. Soc., 2012, 6(2), 923–940. |
[4] | D. Bentaleb and S. Amine, Lyapunov function and global stability for a two-strain SEIR model with bilinear and non-monotone incidence, Int. J. Biomath., 2019, 12(2), 1950021. doi: 10.1142/S1793524519500219 |
[5] | D. Bichara, Y. Kang, C. Castillo-Chavez, et al., SIS and SIR epidemic models under virtual dispersal, Bull. Math. Biol., 2015, 77, 2004–2034. doi: 10.1007/s11538-015-0113-5 |
[6] | V. Borkar and D. Manjunath, Revisiting SIR in the age of COVID-19: Explicit solutions and control problems, SIAM J. Control Optim., 2022, 60(2), S370–S395. doi: 10.1137/20M1372913 |
[7] | T. Caraco and I. N. Wang, Free-living pathogens: Life-history constraints and strain competition, J. Theoret. Biol., 2008, 250(3), 569–579. doi: 10.1016/j.jtbi.2007.10.029 |
[8] | K. Cooke and P. Van Den Driessche, Analysis of an seirs epidemic model with two delays, J. Math. Biol., 1996, 35(2), 240–260. doi: 10.1007/s002850050051 |
[9] | H. El-Saka, The fractional-order SIS epidemic model with variable population size, Egyptian Math. Soc., 2014, 22(1), 50–54. doi: 10.1016/j.joems.2013.06.006 |
[10] | A. Fink, Almost Periodic Differential Equations, Springer-Verlag, New York, 1974. |
[11] | A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ, 1964. |
[12] | K. Fushimi, Y. Enatsu and E. Ishiwata, Global stability of an SIS epidemicmodel with delays, Math. Appl. Sci., 2018, 41, 5345–5354. |
[13] | A. Gabbuti, L. Romanò, P. Blanc, et al., Long-term immunogenicity of hepatitis B vaccination in a cohort of italian healthy adolescents, Vaccine, 2007, 25(16), 3129–3132. doi: 10.1016/j.vaccine.2007.01.045 |
[14] | J. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence RI, 1988. |
[15] | S. Han and C. Lei, Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence, Appl. Math. Lett., 2019, 98, 114–120. doi: 10.1016/j.aml.2019.05.045 |
[16] | C. He, Almost Periodic Differential Equations, Higher Education Publishing House, Beijing, (Chinese), 1992. |
[17] | H. Huo and L. Feng, Global stability of an epidemic model with incomplete treatment and vaccination, Discrete Dyn. Nat. Soc., 2012, 2012, 87–88. |
[18] | H. Huo, Q. Yang and H. Xiang, Dynamics of an edge-based SEIR model for sexually transmitted diseases, Math. Biosci. Eng., 2019, 17(1), 669–699. |
[19] | H. Kang, Asymptotic behavior of the basic reproduction number in an age-structured SIS epidemic patch model, J. Math. Biol., 2023, 87(46). |
[20] | W. Kermack and A. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A., 1927, 115, 700–721. doi: 10.1098/rspa.1927.0118 |
[21] | T. Kuniya and J. Wang, Global dynamics of an SIR epidemic model with nonlocal diffusion, Nonlinear Anal. Real World Appl., 2018, 43, 262–282. doi: 10.1016/j.nonrwa.2018.03.001 |
[22] | J. Li, Y. Yang and Y. Zhou, Global stability of an epidemic model with latent stage and vaccination, Nonlinear Anal. Real World Appl., 2011, 12(4), 2163–2173. doi: 10.1016/j.nonrwa.2010.12.030 |
[23] | X. Lin and Q. Wang, Threshold dynamics of a time-periodic nonlocal dispersal SIS epidemic model with neumann boundary conditions, J. Differ. Equ., 2023, 373, 108–151. doi: 10.1016/j.jde.2023.07.008 |
[24] | J. Liu, Z. Bai and T. Zhang, A periodic two-patch SIS model with time delay and transport-related infection, J. Theoret. Biol., 2018, 437, 36–44. doi: 10.1016/j.jtbi.2017.10.011 |
[25] | P. Liu and H. Li, Global stability of autononmous and nonautonomous hepatitis B virus models in patchy environment, J. Appl. Anal. Appl. Comput., 2020, 10(5), 1771–1799. |
[26] | S. Liu, L. Zhang and Y. Xing, Dynamics of a stochastic heroin epidemic model, J. Comput. Appl. Math., 2019, 351, 260–269. doi: 10.1016/j.cam.2018.11.005 |
[27] | Z. Ma, Spatiotemporal dynamics of a diffusive Leslie-Gower prey-predator model with strong Allee affect, Nonlinear Anal. Real World Appl., 2019, 50, 651–674. doi: 10.1016/j.nonrwa.2019.06.008 |
[28] | P. Magal and X. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 2005, 37(1), 251–275. doi: 10.1137/S0036141003439173 |
[29] | R. Martin and H. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc, 1990, 321(1), 1–44. |
[30] | O. Melikechi, A. Young, T. Tang, et al., Limits of epidemic prediction using SIR models, J. Math. Biol., 2022, 85(4), 36. doi: 10.1007/s00285-022-01804-5 |
[31] | J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Springer, New York, 1986. |
[32] | L. Qiang, B. Wang and Z. Wang, A reaction-diffusion epidemic model with incubation period in almost periodic environments, Euro. J. Appl. Math., 2021, 32(6), 1153–1176. doi: 10.1017/S0956792520000303 |
[33] | A. Ricardo, Analysis of a fractional SEIR model with treatment, Appl. Math. Lett., 2018, 84, 56–62. doi: 10.1016/j.aml.2018.04.015 |
[34] | G. Sell, Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold, London, 1971. |
[35] | Y. Takeguchi and K. Yagasaki, Optimal control of the seir epidemic model using a dynamical systems approach, Jpn. J. Ind. Appl. Math., 2024, 41(1), 297–316. doi: 10.1007/s13160-023-00605-7 |
[36] | B. Wang, W. Li and Z. Wang, A reaction-diffusion sis epidemic model in an almost periodic environment, Z. Angew. Math. Phys., 2015, 66(6), 3085–3108. doi: 10.1007/s00033-015-0585-z |
[37] | B. Wang and X. Zhao, Basic reproduction ratios for almost periodic compartmental epidemic models, J. Dyn. Differ. Equ., 2013, 25(2), 535–562. doi: 10.1007/s10884-013-9304-7 |
[38] | J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996. |
[39] | Y. Xing and H. Li, Almost periodic solutions for a SVIR epidemic model with relapse, Math. Biosci. Eng., 2021, 18(6), 7191–7217. doi: 10.3934/mbe.2021356 |
[40] | Y. Xing and H. Li, Pseudo almost periodic solutions and global exponential stability of a generalized population model with delays and harvesting term, Comput. Appl. Math., 2022, 41(8), 350. doi: 10.1007/s40314-022-02049-0 |
[41] | K. Yagasaki, Nonintegrability of the seir epidemic model, Phys. D., 2023, 453, 133820. doi: 10.1016/j.physd.2023.133820 |
[42] | N. Yoshida, Existence of exact solution of the Susceptible-Exposed-Infectious-Recovered (SEIR) epidemic model, J. Differ. Equ., 2023, 355, 103–143. doi: 10.1016/j.jde.2023.01.017 |
[43] | L. Zhang, S. Liu and X. Zhang, Asymptotic behavior of a stochastic virus dynamics model with intracellular delay and humoral immunity, J. Appl. Anal. Comput., 2019, 9(4), 1425–1442. |
[44] | L. Zhang, Z. Wang and X. Zhao, Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period, J. Differ. Equ., 2015, 258(9), 3011–3036. doi: 10.1016/j.jde.2014.12.032 |
[45] | L. Zhang and Y. Xing, Extremal solutions for nonlinear first-order impulsive integro-differential dynamic equations, Math. Notes., 2019, 105, 124–132. |
[46] | X. Zhang, Q. Shi, S. Ma, et al., Dynamic behavior of a stochastic SIQS epidemic model with levy jumps, Nonlinear Dyn., 2018, 93, 1481–1493. doi: 10.1007/s11071-018-4272-4 |
[47] | X. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2017. |
[48] | F. Zheng and H. Li, Pseudo almost automorphic mild solutions to non-autonomous differential equations in the "strong topology", Banach J. Math. Anal., 2022, 16(1), 1–32. doi: 10.1007/s43037-021-00152-8 |
[49] | C. Zhu, J. Zhu and X. Liu, Influence of spatial heterogeneous environment on long-term dynamics of a reaction-diffusion SVIR epidemic model with relapse, Math. Biosci. Eng., 2019, 16(5), 5897–5922. doi: 10.3934/mbe.2019295 |
Almost periodic solution curves for the model (2.6) with initial values as
Almost periodic solution curves for the model (2.6) with initial values as
Almost periodic solution curves for the model (2.6) with initial values as