2024 Volume 14 Issue 5
Article Contents

Nina Huo, Yongkun Li. PSEUDO ALMOST PERIODIC SOLUTION OF FRACTIONAL-ORDER CLIFFORD-VALUED HIGH-ORDER HOPFIELD NEURAL NETWORKS[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2488-2504. doi: 10.11948/20220447
Citation: Nina Huo, Yongkun Li. PSEUDO ALMOST PERIODIC SOLUTION OF FRACTIONAL-ORDER CLIFFORD-VALUED HIGH-ORDER HOPFIELD NEURAL NETWORKS[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2488-2504. doi: 10.11948/20220447

PSEUDO ALMOST PERIODIC SOLUTION OF FRACTIONAL-ORDER CLIFFORD-VALUED HIGH-ORDER HOPFIELD NEURAL NETWORKS

  • Author Bio: Email: huonn@hfuu.edu.cn(N. Huo)
  • Corresponding author: Email: yklie@ynu.edu.cn(Y. Li)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Grant Nos. 12261098 and 11861072), Natural Science Foundation of Anhui Province (Grant No. 2108085QA10), Natural Science Research Project of Colleges and Universities in Anhui Province (Grant No. 2022AH051782) and Talent Research Fund Project of Hefei University (Grant No. 20RC22)
  • In this work, based on the principle of contraction mapping, we deduce sufficient conditions ensuring the existence of pseudo almost periodic solutions of fractional-order Clifford-valued high-order Hopfield neural networks (FCHHNNs). In addition, we employ a kind of Gronwall inequality to study the finite-time stability of pseudo almost periodic solutions of FCHHNNs. The results and methods of our paper are new. Finally, we give a numerical example to illustrate the effectiveness of the results obtained.

    MSC: 34K14, 34K37, 93D40
  • 加载中
  • [1] M. S. Ali, G. Narayanan, V. Shekher, A. Alsaedi and B. Ahmad, Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays, Commun. Nonlinear Sci. Numer. Simulat., 2020, 83, paper no. 105088. doi: 10.1016/j.cnsns.2019.105088

    CrossRef Google Scholar

    [2] C. Aouiti and F. Dridi, Weighted pseudo almost automorphic solutions for neutral type fuzzy cellular neural networks with mixed delays and D operator in Clifford algebra, Int. J. Syst. Sci., 2020, 51(10), 1759–1781. doi: 10.1080/00207721.2020.1777345

    CrossRef Google Scholar

    [3] C. Aouiti and F. Touati, Global dissipativity of Clifford-valued multidirectional associative memory neural networks with mixed delays, Comput. Appl. Math., 2020, 39, paper no. 310. doi: 10.1007/s40314-020-01367-5

    CrossRef Google Scholar

    [4] N. Boonsatit, G. Rajchakit, R. Sriraman, C. P. Lim and P. Agarwal, Finite-/fixed-time synchronization of delayed Clifford-valued recurrent neural networks, Adv. Differ. Equ., 2021, 2021(2021), paper no. 276.

    Google Scholar

    [5] S. Breuils, K. Tachibana and E. Hitzer, New Applications of Clifford's Geometric Algebra, Adv. Appl. Clifford Algebras, 2022, 32, paper no. 17. doi: 10.1007/s00006-021-01196-7

    CrossRef Google Scholar

    [6] S. Buchholz, A Theory of Neural Computation with Clifford Algebras, PhD thesis, University of Kiel, 2005.

    Google Scholar

    [7] S. Buchholz and G. Sommer, On Clifford neurons and Clifford multi-layer perceptrons, Neural Netw., 2008, 21(7), 925–935. doi: 10.1016/j.neunet.2008.03.004

    CrossRef Google Scholar

    [8] J. Chen, Z. Zeng and P. Jiang, Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks, Neural Netw., 2014, 51, 1–8. doi: 10.1016/j.neunet.2013.11.016

    CrossRef Google Scholar

    [9] Y. Chen, X. Zhang and Y. Xue, Global exponential synchronization of high-order quaternion Hopfield neural networks with unbounded distributed delays and time-varying discrete delays, Math. Comput. Simul., 2022, 193, 173–189. doi: 10.1016/j.matcom.2021.10.012

    CrossRef Google Scholar

    [10] T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer, New York, 2013.

    Google Scholar

    [11] L. Duan, L. Huang, Z. Guo and X. Fang, Periodic attractor for reaction-diffusion high-order Hopfield neural networks with time-varying delays, Comput. Math. Appl., 2017, 73(2), 233–245. doi: 10.1016/j.camwa.2016.11.010

    CrossRef Google Scholar

    [12] Z. He, C. Li, H. Li and Q. Zhang, Global exponential stability of high-order Hopfield neural networks with state-dependent impulses, Physica A, 2020, 542, paper no. 123434. doi: 10.1016/j.physa.2019.123434

    CrossRef Google Scholar

    [13] E. Hitzer, T. Nitta and Y. Kuroe, Applications of Clifford's geometric algebra, Adv. Appl. Clifford Algebras, 2013, 23(2), 377–404. doi: 10.1007/s00006-013-0378-4

    CrossRef Google Scholar

    [14] S. Huang, Y. Y. Qiao and G. C. Wen, Real and Complex Clifford Analysis, Springer, New York, 2006.

    Google Scholar

    [15] N. Huo and Y. Li, Finite-time Sp-almost periodic synchronization of fractional-order octonion-valued Hopfield neural networks, Chaos Solitons Fractals, 2023, 173, paper no. 113721. doi: 10.1016/j.chaos.2023.113721

    CrossRef Google Scholar

    [16] B. Li, Y. Cao and Y. Li, Almost periodic oscillation in distribution for octonion-valued neutral-type stochastic recurrent neural networks with D operator, Nonlinear Dyn., 2023, 111, 11371–11388. doi: 10.1007/s11071-023-08411-z

    CrossRef Google Scholar

    [17] B. Li and Y. Li, Existence and global exponential stability of pseudo almost periodic solution for Clifford-valued neutral high-order Hopfield neural networks with leakage delays, IEEE Access, 2019, 7, 150213–150225. doi: 10.1109/ACCESS.2019.2947647

    CrossRef Google Scholar

    [18] Y. Li, M. Huang and B. Li, Besicovitch almost periodic solutions for fractional-order quaternion-valued neural networks with discrete and distributed delays, Math. Meth. Appl. Sci., 2022, 45(8), 4791–4808. doi: 10.1002/mma.8070

    CrossRef Google Scholar

    [19] Y. Li and B. Li, Pseudo compact almost automorphy of neutral type Clifford-valued neural networks with mixed delays, Discrete Contin. Dyn. Syst.-B, 2022, 27(9), 4703–4724. doi: 10.3934/dcdsb.2021248

    CrossRef Google Scholar

    [20] Y. Li, C. Ruan and B. Li, Existence and finite-time stability of Besicovitch almost periodic solutions of fractional-order quaternion-valued neural networks with time-varying delays, Neural Process. Lett., 2022, 54, 2127–2141. doi: 10.1007/s11063-021-10722-4

    CrossRef Google Scholar

    [21] Y. Li and X. Wang, Almost periodic solutions in distribution of Clifford-valued stochastic recurrent neural networks with time-varying delays, Chaos Solitons Fractals, 2021, 153, 111536. doi: 10.1016/j.chaos.2021.111536

    CrossRef Google Scholar

    [22] Y. Li, X. Wang and N. Huo, Weyl almost automorphic solutions in distribution sense of Clifford-valued stochastic neural networks with time-varying delays, Proc. Royal Soc. A, 2022, 478(2257), paper no. 20210719. doi: 10.1098/rspa.2021.0719

    CrossRef Google Scholar

    [23] Y. Li, Y. Wang and B. Li, Existence and finite-time stability of a unique almost periodic positive solution for fractional-order Lasota-Wazewska red blood cell models, Int. J. Biomath., 2020, 13(2), paper no. 2050013. doi: 10.1142/S1793524520500138

    CrossRef Google Scholar

    [24] Y. Liu, P. Xu, J. Lu and J. Liang, Global stability of Clifford-valued recurrent neural networks with time delays, Nonlinear Dyn., 2016, 84(2), 767–777. doi: 10.1007/s11071-015-2526-y

    CrossRef Google Scholar

    [25] D. Luo, Q. Jiang and Q. Wang, Anti-periodic solutions on Clifford-valued high-order Hopfield neural networks with multi-proportional delays, Neurocomputing, 2022, 472, 1–11. doi: 10.1016/j.neucom.2021.11.001

    CrossRef Google Scholar

    [26] W. Lv and B. Li, Existence and global attractivity of pseudo almost periodic solutions for Clifford-valued fuzzy neural networks with proportional delays, Math., 2021, 9(24), paper no. 3306. doi: 10.3390/math9243306

    CrossRef Google Scholar

    [27] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, New York, 1999.

    Google Scholar

    [28] G. Rajchakit, P. Chanthorn, P. Kaewmesri, R. Sriraman and C. P. Lim, Global Mittag-Leffler stability and stabilization analysis of fractional-order quaternion-valued memristive neural networks, Math., 2020, 8(3), paper no. 422. doi: 10.3390/math8030422

    CrossRef Google Scholar

    [29] G. Rajchakit, P. Chanthorn, M. Niezabitowski, R. Raja, D. Baleanu and A. Pratap, Impulsive effects on stability and passivity analysis of memristor-based fractional-order competitive neural networks, Neurocomputing, 2020, 417, 290–301. doi: 10.1016/j.neucom.2020.07.036

    CrossRef Google Scholar

    [30] G. Rajchakit, A. Pratap, R. Raja, J. Cao, J. Alzabut and C. Huang, Hybrid control scheme for projective lag synchronization of Riemann-Liouville sense fractional order memristive BAM neural networks with mixed delays, Math., 2019, 7(8), paper no. 759. doi: 10.3390/math7080759

    CrossRef Google Scholar

    [31] G. Rajchakit, R. Sriraman, N. Boonsatit, P. Hammachukiattikul, C. P. Lim and P. Agarwal, Global exponential stability of Clifford-valued neural networks with time-varying delays and impulsive effects, Adv. Differ. Equ., 2021, 2021(2021), paper no. 208.

    Google Scholar

    [32] G. Rajchakit, R. Sriraman, C. P. Lim and B. Unyong, Existence, uniqueness and global stability of Clifford-valued neutral-type neural networks with time delays, Math. Comput. Simul., 2022, 201, 508–527. doi: 10.1016/j.matcom.2021.02.023

    CrossRef Google Scholar

    [33] G. Rajchakit, R. Sriraman, P. Vignesh and C. P. Lim, Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis, Appl. Math. Comput., 2021, 407, paper no. 126309.

    Google Scholar

    [34] C. Xu, M. Liao, P. Li, L. Yao, Q. Qin and Y. Shang, Chaos control for a fractional-order jerk system via time delay feedback controller and mixed controller, Frac. Fract., 2021, 5(4), paper no. 257. doi: 10.3390/fractalfract5040257

    CrossRef Google Scholar

    [35] C. Xu, M. Liao, P. Li and S. Yuan, Impact of leakage delay on bifurcation in fractional-order complex-valued neural networks, Chaos Solitons Fractals, 2021, 142, paper no. 110535. doi: 10.1016/j.chaos.2020.110535

    CrossRef Google Scholar

    [36] C. Xu, Z. Liu, M. Liao, P. Li, Q. Xiao and S. Yuan, Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: The case of Hopf bifurcation, Math. Comput. Simul., 2021, 182, 471–494. doi: 10.1016/j.matcom.2020.11.023

    CrossRef Google Scholar

    [37] Y. Xu, T. Lin, X. Liu and W. Li, Exponential bipartite synchronization of fractional-order multilayer signed networks via hybrid impulsive control, IEEE Trans. Cyber., 2023, 53, 3926–3938. doi: 10.1109/TCYB.2022.3190413

    CrossRef Google Scholar

    [38] Y. Xu, F. Sun and W. Li, Exponential synchronization of fractional-order multilayer coupled neural networks with reaction-diffusion terms via intermittent control, Neural Comput. Appl., 2021, 33(23), 16019–16032. doi: 10.1007/s00521-021-06214-0

    CrossRef Google Scholar

    [39] Y. Xu, J. Yu, W. Li and J. Feng, Global asymptotic stability of fractional-order competitive neural networks with multiple time-varying-delay links, Appl. Math. Comput., 2021, 389, paper no. 125498.

    Google Scholar

    [40] H. Ye, J. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 2007, 328, 1075–1081. doi: 10.1016/j.jmaa.2006.05.061

    CrossRef Google Scholar

    [41] J. Yu, C. Hu and H. Jiang, $\alpha$-stability and $\alpha$-synchronization for fractional-order neural networks, Neural Netw., 2012, 35, 82–87. doi: 10.1016/j.neunet.2012.07.009

    CrossRef $\alpha$-stability and $\alpha$-synchronization for fractional-order neural networks" target="_blank">Google Scholar

    [42] F. Zhang, T. Huang, Q. Wu and Z. Zeng, Multistability of delayed fractional-order competitive neural networks, Neural Netw., 2021, 140, 325–335. doi: 10.1016/j.neunet.2021.03.036

    CrossRef Google Scholar

    [43] S. Zhang, Y. Yu and J. Yu, LMI conditions for global stability of fractional-order neural networks, IEEE Trans. Neural Netw. Learn. Syst., 2016, 28(10), 2423–2433.

    Google Scholar

Figures(9)

Article Metrics

Article views(5952) PDF downloads(344) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint