Citation: | Mengda Wu, Yonghui Xia, Ziyi Xu. FLOQUET MULTIPLIERS AND THE STABILITY OF PERIODIC LINEAR DIFFERENTIAL EQUATIONS: A UNIFIED ALGORITHM AND ITS COMPUTER REALIZATION[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 575-608. doi: 10.11948/20220518 |
Floquet multipliers (characteristic multipliers) play significant role in the stability of the periodic equations. Based on the iterative method, we provide a unified algorithm to compute the Floquet multipliers (characteristic multipliers) and determine the stability of the periodic linear differential equations on time scales unifying discrete, continuous, and hybrid dynamics. Our approach is based on calculating the value of $\mathcal{A}$ and $\mathcal{B}$ (see Theorem 3.1), which are the sum and product of all Floquet multipliers (characteristic multipliers) of the system, respectively. We obtain an explicit expression of $\mathcal{A}$ (see Theorem 4.1) by the method of variation and approximation theory (iterative method), and an explicit expression of $\mathcal{B}$ by Liouville's formula. Furthermore, a computer program is designed to realize our algorithm. Specifically, you can determine the stability of a second order periodic linear system, whether they are discrete, continuous or hybrid, as long as you enter the program codes associated with the parameters of the equation. In fact, few literatures have dealt with the algorithm to compute the Floquet multipliers, not mention to design the program for its computer realization. Our algorithm gives the explicit expressions of all Floquet multipliers and our computer program is based on the approximations of these explicit expressions. In particular, on an arbitrary discrete periodic time scale, we can do a finite number of calculations to get the explicit value of Floquet multipliers (see Theorem 4.2). Therefore, for any discrete periodic system, we can accurately determine the stability of the system by our algorithm even without computer! Finally, in Section 6, several examples are presented to illustrate the effectiveness of our algorithm.
[1] | R. P. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, Results Math., 1999, 35(1–2), 3–22. |
[2] | R. P. Agarwal, M. Bohner, A. Domoshnitsky and Y. Goltser, Floquet theory and stability of nonlinear integro-differential equations, Acta Math. Hungar., 2005, 109(4), 305–330. doi: 10.1007/s10474-005-0250-7 |
[3] | R. P. Agarwal, M. Bohner and D. O'Regan, Dynamic equations on time scales: a survey, J. Comput Appl. Math., 2002, 141(1–2), 1–26. |
[4] | M. Adivar and H. C. Koyuncuoğlu, Floquet theory based on new periodicity concept for hybrid systems involving $ q$-difference equations, Appl. Math. Comput., 2016, 273, 1208–1233. |
[5] | C. D. Ahlbrandt and J. Ridenhour, Floquet theory for time scales and Putzer representations of matrix logarithms, J. Difference Equ. Appl., 2003, 9(1), 77–92. doi: 10.1080/10236100309487536 |
[6] | B. Aulbach and C. Pötzsche, Reducibility of linear dynamic equations on measure chains, J. Comput. Appl. Math., 2002, 141(1–2), 101–115. |
[7] | S. R. Barone, M. A. Narcowich and F. J. Narcowich, Floquet theory and applications, Phys. Rev. A, 1977, 15(3), 1119–1125. |
[8] | L. C. Becker, T. A. Burton and T. Krisztin, Floquet theory for a Volterra equation, J. London Math. Soc., 1988, 37(2), 141–147. |
[9] | R. Benterki and J. Llibre, Periodic solutions of a class of duffing differential equations, J. Nonlinear Modeling Anal., 2019, 1(2), 167–177. |
[10] | R. Benterki and J. Llibre, Periodic solutions of the duffing differential equation revisited via the averaging theory, J. Nonlinear Modeling Anal., 2019, 1(1), 11–26. |
[11] | M. Bohner, G. Guseinov and A. Peterson, Introduction to the Time Scales Calculus: Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003. |
[12] | M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001. |
[13] | D. Breda, S. Mast and R. Vermiglio, Numerical computation of characteristic multipliers for linear time periodic coefficients delay differential equations, IFIC Proceedings Volumes, 2006, 39, 163–168. |
[14] | H. Broer, Resonance tongues in Hill's equations: a geometric approach, J. Differential Equations, 2000, 166(2), 290–327. doi: 10.1006/jdeq.2000.3804 |
[15] | R. Carlson, Eigenvalue estimates and trace for the matrix Hill's equation, J. Differential Equations, 2000, 167(1), 211–244. doi: 10.1006/jdeq.2000.3785 |
[16] | D. Cheng, K. I. Kou and Y. Xia, A unified annlysis of linear quaternion dynamic equations on time scales, J. Appl. Anal. Comput., 2020, 10(5), 1869–1877. |
[17] | C. Chicone, Ordinary Differential Equations with Applications, Springer-Verlag, New York, 1999. |
[18] | S. N. Chow, K. Lu and J. Mallet-Paret, Floquet theory for parabolic differential equations, J. Differential Equations, 1994, 109(1), 147–200. doi: 10.1006/jdeq.1994.1047 |
[19] | S. N. Chow and H. O. Walther, Characteristic multipliers and stability of symmetric periodic solutions of $ \dot{x}(t)=g(x(t-1))$, Trans. Amer. Math. Soc., 1988, 307(1), 127–142. |
[20] | J. J. DaCunha, Lyapunov Stability and Floquet Theory for Nonautonomous Linear Dynamic Systems on Time Scales, Ph. D. Thesis, Baylor University, 2004. ISBN: 978-0496-82618-6. |
[21] | J. J. DaCunha and J. M. Davis, A unified Floquet theory for discrete, continuous, and hybrid periodic linear systems, J. Differential Equations, 2011, 251(11), 2987–3027. doi: 10.1016/j.jde.2011.07.023 |
[22] | A. Demir, Floquet theory and non-linear perturbation analysis for oscillators with differential-algebraic equations, Int. J. Circuit Theory Appl., 2000, 28(2), 163–185. doi: 10.1002/(SICI)1097-007X(200003/04)28:2<163::AID-CTA101>3.0.CO;2-K |
[23] | T. S. Doan, A. Kalauch, S. Siegmund and F. R. Wirth, Stability radii for positive linear time-invariant systems on time scales, Systems Control Lett., 2010, 59(3–4), 173–179. |
[24] | T. S. Doan, A. Kalauch and S. Siegmund, Exponential stability of linear time-invariant systems on time scales, Nonlinear Dyn. Syst. Theory, 2009, 9(1), 37–50. |
[25] | P. Dormayer, A. F. Ivanov and B. Lani-Wayda, Floquet multipliers of symmetric rapidly oscillating solutions of differential delay equations, Tohoku Math. J., 2002, 54(3), 419–441. |
[26] | L. Erbe and A. Peterson, Green's functions and comparison theorems for differential equations on measure chains, Dynam. Contin. Discrete Impuls. Systems, 1999, 6(1), 121–137. |
[27] | M. Federson, J. G. Mesquita and A. Slavík, Measure functional differential equations and functional dynamic equations on time scales, J. Differential Equations, 2012, 252(6), 3816–3847. doi: 10.1016/j.jde.2011.11.005 |
[28] | M. Federson, R. Grau, J. G. Mesquita and E. Toon, Lyapunov stability for measure differential equations and dynamic equations on time scales, J. Differential Equations, 2019, 267(7), 4192–4223. doi: 10.1016/j.jde.2019.04.035 |
[29] | H. I. Freedman, Almost Floquet systems, J. Differential Equations, 1971, 10, 345–354. doi: 10.1016/0022-0396(71)90057-X |
[30] | F. Gesztesy and R. Weikard, Floquet theory revisited, in: Differential Equations and Mathematical Physics, Proceedings of the International Conference, Univ. of Alabama at Birmingham, March 13–17, 1994, International Press, Boston, MA, 1995. |
[31] | S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph. D. thesis, Universität Würzburg, 1988. |
[32] | S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Result Math., 1990, 18(1–2), 18–56. |
[33] | S. Hilger, Differential and difference calculus-unified!, Nonlinear Anal., 1997, 30(5), 2683–2694. doi: 10.1016/S0362-546X(96)00204-0 |
[34] | R. A. Johnson, On a Floquet theory for almost-periodic, two-dimensional linear systems, J. Differential Equations, 1980, 37(2), 184–205. doi: 10.1016/0022-0396(80)90094-7 |
[35] | W. G. Kelley and A. C. Peterson, Difference Equations: An Introduction with Applications, Academic Press, San Diego, 2001. |
[36] | D. Kotsis, The approximation of the characteristic multipliers of periodic differential equations, Alkalmaz. Mat. Lapok, 1976, 2(3–4), 269–276. |
[37] | P. Kuchment, On the behavior of Floquet exponents of a kind of periodic evolution problems, J. Differential Equations, 1994, 109(2), 309–324. doi: 10.1006/jdeq.1994.1052 |
[38] | R. Lamour, R. März and R. Winkler, How Floquet theory applies to index 1 differential algebraic equations, J. Math. Anal. Appl., 1998, 217(2), 372–394. doi: 10.1006/jmaa.1997.5714 |
[39] | Z. Li, C. Wang, R. P. Agarwal and D. O'Regan, Commutativity of quaternion-matrix-valued functions and quaternion matrix dynamic equations on time scales, Stud. Appl. Math., 2021, 146(1), 139–210. doi: 10.1111/sapm.12344 |
[40] | Y. Li, X. Wang and N. Huo, Weyl almost automorphic solutions in distribution sense of Clifford-valued stochastic neural networks with time-varying delays, Proc. A, 2022, 478(2257), 20210719. |
[41] | T. Luzyanina and K. Engelborghs, Computing Floquet multipliers for functional differential equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2002, 12(12), 2977–2989. doi: 10.1142/S0218127402006291 |
[42] | J. Mallet-Paret and G. R. Sell, Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions, J. Differential Equations, 1996, 125(2), 385–440. doi: 10.1006/jdeq.1996.0036 |
[43] | V. G. Papanicolaou and D. Kravvaritis, The Floquet theory of the periodic Euler-Bernoulli equation, J. Differential Equations, 1998, 150(1), 24–41. doi: 10.1006/jdeq.1998.3474 |
[44] | C. Pötzsche, Langsame Faserbündel dynamischer Gleichungen auf Maßketten, Logos, Berlin, 2002. |
[45] | C. Pötzsche, Exponential dichotomies for dynamic equations on measure chains, Nonlinear Anal., 2001, 47(2), 873–884. doi: 10.1016/S0362-546X(01)00230-9 |
[46] | C. Pötzsche, Topological decoupling, linearization and perturbation on inhomogeneous time scales, J. Differential Equation, 2008, 245(5), 1210–1242. doi: 10.1016/j.jde.2008.06.011 |
[47] | C. Pötzsche, S. Siegmund and F. Wirth, A spectral characterization of exponential stability for linear time-invariant systems on time scales, Discrete Contin. Dyn. Syst., 2003, 9(5), 1223–1241. doi: 10.3934/dcds.2003.9.1223 |
[48] | J. Shi, On stability of two order linear differential equation with periodic coefficient, Acta Math. Sci. Ser. A, 2000 20(1), 130–139. |
[49] | J. Shi, M. Lin and J. Chen, The calculation for characteristic multiplier of Hill's equation, Appl. Math. Comput., 2004, 159(1), 57–77. |
[50] | S. Siegmund, A spectral notion for dynamic equations on time scales, J. Comput. Appl. Math., 2002, 141(1–2), 255–265. |
[51] | C. Simmendinger, A. Wunderlin and A. Pelster, Analytical approach for the Floquet theory of delay differential equations, Phys. Rev. E, 1999, 59(5), 5344–5353. doi: 10.1103/PhysRevE.59.5344 |
[52] | A. L. Skubachevskii and H. O. Walther, On the Floquet multipliers of periodic solutions to non-linear functional differential equations, J. Dynam. Differential Equations, 2006 18(2), 257–355. doi: 10.1007/s10884-006-9006-5 |
[53] | Y. V. Teplinskiĭ and A. Y. Teplinskiĭ, On the Erugin and Floquet-Lyapunov theorems for countable systems of difference equations, Ukrainian Math. J., 1996, 48(2), 314–321. doi: 10.1007/BF02372054 |
[54] | K. O. Val'ter and A. L. Skubachevskii, On Floquet multipliers for slowly oscillating periodic solutions of nonlinear functional differential equations, Tr. Mosk. Mat. Obs., 2003, 64, 3–53. |
[55] | H. O. Walther, Hyperbolic periodic solutions, heteroclinic connections and transversal homoclinic points in autonomous differential delay equations, Mem. Amer. Math. Soc., 1989, 79(402). DOI: 10.1090/memo/0402. |
[56] | C. Wang, R. P. Agarwal and D. O'Regan, Calculus of fuzzy vector-valued functions and almost periodic fuzzy vector-valued functions on time scales, Fuzzy Sets and Systems, 2019, 375, 1–52. doi: 10.1016/j.fss.2018.12.008 |
[57] | C. Wang, R. P. Agarwal and D. O'Regan, Almost periodic fuzzy multidimensional dynamic systems and applications on time scales, Chaos Solitons Fractals, 2022, 156, 111781. doi: 10.1016/j.chaos.2021.111781 |
[58] | C. Wang, R. P. Agarwal, D. O'Regan and R. Sakthivel, Theory of Translation Closedness for Time Scales, Springer-Verlag, Switzerland, 2020. |
[59] | C. Wang and R. P. Agarwal, Almost automorphic functions on semigroups induced by complete-closed time scales and application to dynamic equations, Discrete Contin. Dyn. Syst. Ser. B, 2020, 25(2), 781–798. |
[60] | C. Wang, Z. Li and R. P. Agarwal, Hyers-Ulam-Rassias stability of high-dimensional quaternion impulsive fuzzy dynamic equations on time scales, Discrete Contin. Dyn. Syst. Ser. S, 2022, 15(2), 359–386. doi: 10.3934/dcdss.2021041 |
[61] | R. Weikard, Floquet theory for linear differential equations with meromorphic solutions, Electron. J. Qual. Theory Differ. Equ., 2000, 8, 1–6. DOI: 10.14232/ejqtde.2000.1.8. |
[62] | J. Zhang, M. Fan and H. Zhu, Existence and roughness of exponential dichotomies of linear dynamic equations on time scales, Comput. Math. Appl., 2010, 59(8), 2658–2675. doi: 10.1016/j.camwa.2010.01.035 |
[63] | J. Zhang, M. Fan and H. Zhu, Necessary and sufficient criteria for the existence of exponential dichotomy on time scales, Comput. Math. Appl., 2010, 60(8), 2387–2398. doi: 10.1016/j.camwa.2010.08.034 |