Citation: | Shuaishuai Lu, Xue Yang. PARTIAL PRACTICAL STABILITY AND ASYMPTOTIC STABILITY OF STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY LÉVY NOISE WITH A GENERAL DECAY RATE[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 553-574. doi: 10.11948/20220476 |
In this paper, we mainly study the almost sure partial practical stability of stochastic differential equations driven by Lévy noise with a general decay rate. By establishing a suitable Lyapunov function and using Exponential Martingale inequality and Borel-Cantelli theorem, giving some sufficient conditions that can guarantee the almost sure partial practical stability of equations. At the same time, we also study general conditions that guarantee the almost sure asymptotic stability of the equation. Finally, we also give two examples to illustrate our theoretical results.
[1] | D. Applebaum, L$ \acute{\text{e}}$vy processes and stochastic calculus, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2004. |
[2] | D. Applebaum, L$ \acute{\text{e}}$vy processes and stochastic calculus, Second edition, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2009. |
[3] |
D. Applebaum and M. Siakalli, Asymptotic stability of stochastic differential equations driven by L$ \acute{\text{e}}$vy noise, J. Appl. Probab., 2009, 46(4), 1116–1129. doi: 10.1239/jap/1261670692
CrossRef $ \acute{\text{e}}$vy noise" target="_blank">Google Scholar |
[4] | L. Arnold and B. Schmalfuss, Lyapunov's second method for random dynamical systems, J. Differential Equations, 2001, 177(1), 235–265. doi: 10.1006/jdeq.2000.3991 |
[5] | J. Bertoin, L$ \acute{\text{e}}$vy processes, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1996. |
[6] | S. P. Bhat and D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 2000, 38(3), 751–766. doi: 10.1137/S0363012997321358 |
[7] | T. Caraballo, F. Ezzine and M. A. Hammami, Partial stability analysis of stochastic differential equations with a general decay rate, J. Engrg. Math., 2021, 130(4), 17. |
[8] | T. Caraballo, F. Ezzine, M. A. Hammami and L. Mchiri, Practical stability with respect to a part of variables of stochastic differential equations, Stochastics, 2021, 93(5), 647–664. doi: 10.1080/17442508.2020.1773826 |
[9] | T. Caraballo, M. A. Hammami and L. Mchiri, Practical asymptotic stability of nonlinear stochastic evolution equations, Stoch. Anal. Appl., 2014, 32(1), 77–87. doi: 10.1080/07362994.2013.843142 |
[10] | T. Caraballo, M. A. Hammami and L. Mchiri, On the practical global uniform asymptotic stability of stochastic differential equations, Stochastics, 2016, 88(1), 45–56. doi: 10.1080/17442508.2015.1029719 |
[11] |
R. Denk, M. Kupper and M. Nendel, A semigroup approach to nonlinear L$ \acute{\text{e}}$vy processes, Stochastic Process. Appl., 2020, 130(3), 1616–1642. doi: 10.1016/j.spa.2019.05.009
CrossRef $ \acute{\text{e}}$vy processes" target="_blank">Google Scholar |
[12] |
C. Fei, W. Fei and X. Mao, A note on sufficient conditions of asymptotic stability in distribution of stochastic differential equations with $ G$-Brownian motion, Appl. Math. Lett., 2023, 136, 108448. doi: 10.1016/j.aml.2022.108448
CrossRef $ G$-Brownian motion" target="_blank">Google Scholar |
[13] | O. Ignatyev, Partial asymptotic stability in probability of stochastic differential equations, Statist. Probab. Lett., 2009, 79(5), 597–601. doi: 10.1016/j.spl.2008.10.005 |
[14] | A. E. Kyprianou, Introductory lectures on fluctuations of L$ \acute{\text{e}}$vy processes with applications, Universitext., Springer-Verlag, Berlin, 2006. |
[15] | C. Li, J. Sun and R. Sun, Stability analysis of a class of stochastic differential delay equations with nonlinear impulsive effects, J. Franklin Inst., 2010, 347(7), 1186–1198. doi: 10.1016/j.jfranklin.2010.04.017 |
[16] |
M. Li and F. Deng, Almost sure stability with general decay rate of neutral stochastic delayed hybrid systems with L$ \acute{\text{e}}$vy noise, Nonlinear Anal. Hybrid Syst., 2017, 24, 171–185. doi: 10.1016/j.nahs.2017.01.001
CrossRef $ \acute{\text{e}}$vy noise" target="_blank">Google Scholar |
[17] | Y. Li, Z. Liu and W. Wang, Almost periodic solutions and stable solutions for stochastic differential equations, Discrete Contin. Dyn. Syst. Ser. B, 2019, 24(11), 5927–5944. |
[18] | Z. Li and L. Xu, Almost automorphic solutions for stochastic differential equations driven by L$ \acute{\text{e}}$vy noise, Phys. A, 2020, 545, 19. |
[19] | M. Liao, L$ \acute{\text{e}}$vy processes in Lie groups, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2004, 162. |
[20] | H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: a survey of recent results, IEEE Trans. Automat. Control, 2009, 54(2), 308–322. doi: 10.1109/TAC.2008.2012009 |
[21] | K. Y. Lum, D. S. Bernstein and V. T. Coppola, Global stabilization of the spinning top with mass imbalance, Dynam. Stability Systems, 1995, 10(4), 339–365. doi: 10.1080/02681119508806211 |
[22] | X. Mao, Almost sure polynomial stability for a class of stochastic differential equations, Quart. J. Math. Oxford Ser., 1992, 43(171), 339–348. |
[23] | X. Mao, Stability of stochastic differential equations with Markovian switching, Stochastic Process. Appl., 1999, 79(1), 45–67. doi: 10.1016/S0304-4149(98)00070-2 |
[24] | X. Mao, Stochastic differential equations and applications, Second edition, Horwood Publishing Limited, Chichester, 2008. |
[25] | K. Peiffer and N. Rouche, Liapunov's second method applied to partial stability, J. Mécanique, 1969, 8, 323–334. |
[26] | A. V. Skorokhod, Asymptotic methods in the theory of stochastic differential equations, American Mathematical Society, Providence, RI, 1989. |
[27] | A. V. Skorokhod, On stability of solution in inertial navigation problem, Certain problems on dynamics of mechanical systems, Moscow, 1991, 46–50. |
[28] | L. Tan, W. Jin and Y. Suo, Stability in distribution of neutral stochastic functional differential equations, Statist. Probab. Lett., 2015, 107, 27–36. doi: 10.1016/j.spl.2015.07.033 |
[29] | V. I. Vorotnikov, Partial stability and control, Translated from the Russian by Igor E. Merinov. Birkhäuser Boston, Inc., Boston, MA, 1998. |
[30] | B. Wang and Q. Zhu, Stability analysis of Markov switched stochastic differential equations with both stable and unstable subsystems, Systems Control Lett., 2017, 105, 55–61. doi: 10.1016/j.sysconle.2017.05.002 |
[31] |
H. Wu and J. Sun, $ p$-moment stability of stochastic differential equations with impulsive jump and Markovian switching, Automatica J. IFAC, 2006, 42(10), 1753–1759. doi: 10.1016/j.automatica.2006.05.009
CrossRef $ p$-moment stability of stochastic differential equations with impulsive jump and Markovian switching" target="_blank">Google Scholar |
[32] | S. Wu, D. Han and X. Meng, $ p$-moment stability of stochastic differential equations with jumps, Appl. Math. Comput., 2004, 152(2), 505–519. |
[33] |
Y. Xu, J. Duan and W. Xu, An averaging principle for stochastic dynamical systems with L$ \acute{\text{e}}$vy noise, Phys. D, 2011, 240(17), 1395–1401. doi: 10.1016/j.physd.2011.06.001
CrossRef $ \acute{\text{e}}$vy noise" target="_blank">Google Scholar |
[34] | Y. Xu, B. Pei and G. Guo, Existence and stability of solutions to non-Lipschitz stochastic differential equations driven by L$ \acute{\text{e}}$vy noise, Appl. Math. Comput., 2015, 263, 398–409. |
[35] |
Y. Xu, X. Wang, H. Zhang and W. Xu, Stochastic stability for nonlinear systems driven by L$ \acute{\text{e}}$vy noise, Nonlinear Dynam., 2012, 68(1–2), 7–15. doi: 10.1007/s11071-011-0199-8
CrossRef $ \acute{\text{e}}$vy noise" target="_blank">Google Scholar |
[36] | C. Yuan and X. Mao, Robust stability and controllability of stochastic differential delay equations with Markovian switching, Automatica J. IFAC, 2004, 40(3), 343–354. doi: 10.1016/j.automatica.2003.10.012 |
[37] |
Q. Zhu, Asymptotic stability in the pth moment for stochastic differential equations with L$ \acute{\text{e}}$vy noise, J. Math. Anal. Appl., 2014, 416(1), 126–142. doi: 10.1016/j.jmaa.2014.02.016
CrossRef $ \acute{\text{e}}$vy noise" target="_blank">Google Scholar |
[38] |
Q. Zhu, Razumikhin-type theorem for stochastic functional differential equations with L$ \acute{\text{e}}$vy noise and Markov switching, Internat. J. Control, 2017, 90(8), 1703–1712. doi: 10.1080/00207179.2016.1219069
CrossRef $ \acute{\text{e}}$vy noise and Markov switching" target="_blank">Google Scholar |
[39] |
Q. Zhu, Stability analysis of stochastic delay differential equations with L$ \acute{\text{e}}$vy noise, Systems Control Lett., 2018, 118, 62–68. doi: 10.1016/j.sysconle.2018.05.015
CrossRef $ \acute{\text{e}}$vy noise" target="_blank">Google Scholar |