2023 Volume 13 Issue 1
Article Contents

Shuyuan Xiao, Shaoyun Shi. NORMAL FORMS OF NILPOTENT SYSTEM IN $ \mathbb{C}^{2}\times\mathbb{C}^{2}$[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 526-552. doi: 10.11948/20220466
Citation: Shuyuan Xiao, Shaoyun Shi. NORMAL FORMS OF NILPOTENT SYSTEM IN $ \mathbb{C}^{2}\times\mathbb{C}^{2}$[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 526-552. doi: 10.11948/20220466

NORMAL FORMS OF NILPOTENT SYSTEM IN $ \mathbb{C}^{2}\times\mathbb{C}^{2}$

  • In this paper, we consider the following nilpotent system:

    $\dot{\theta}=\omega+\Theta(\theta, u), \quad\dot{u}=Au+f(\theta, u), $

    where $\theta \in \mathbb{C}^{2}$, $u\in\mathbb{C}^{2}$, $\omega=(\omega_{1}, \omega_{2})\in\mathbb{R}^{2}$, $A=\begin{pmatrix}\lambda & 1\\ ~ &\lambda\end{pmatrix}$, $\Theta$ and $f$ are analytic functions and $2\pi-$periodic in each component of the vector $\theta$, $\Theta=O(|u|)$ and $f=O(|u|^{2})$ as $u\rightarrow 0.$ Two kinds of normal forms are presented based on the different small-divisor conditions.

    MSC: 37G05
  • 加载中
  • [1] L. Barreira and C. Valls, Normal forms for equivariant differential equations, J. Dyn. Differ. Equ., 2022, 34(2), 1371–1392. doi: 10.1007/s10884-021-10006-4

    CrossRef Google Scholar

    [2] G. Chen and J. Della Dora, Normal forms for differentiable maps near a fixed point, Numer. Algorithms, 1999, 22(2), 213–230. doi: 10.1023/A:1019115025764

    CrossRef Google Scholar

    [3] R. H. Cushman and J. A. Sanders, Splitting algorithm for nilpotent normal forms, Dyn. Stabil. Syst., 1987, 2(3-4), 235–246.

    Google Scholar

    [4] R. H. Cushman and J. A. Sanders, A survey of invariant theory applied to normal forms of vectorfields with nilpotent linear part, Inst. Math. Appl., 1990, 19, 82–106.

    Google Scholar

    [5] S. Chow, K. Lu and Y. Shen, Normal form and linearization for quasiperiodic systems, Trans. Am. Math. Soc., 1992, 331(1), 361–376. doi: 10.1090/S0002-9947-1992-1076612-1

    CrossRef Google Scholar

    [6] X. Chen and W. Zhang, Normal forms of planar switching systems, Discrete Contin. Dyn. Syst, 2016, 36(12), 6715–6736. doi: 10.3934/dcds.2016092

    CrossRef Google Scholar

    [7] Y. Du, B. B. Niu, Y. Guo and J. Wei, Double Hopf bifurcation in delayed reaction-diffusion systems, J. Dyn. Differ. Equ., 32(1), 2020, 313–358. doi: 10.1007/s10884-018-9725-4

    CrossRef Google Scholar

    [8] T. Diez and G. Rudolph, Normal form of equivariant maps in infinite dimensions, Ann. Glob. Anal. Geom., 2022, 61(1), 159–213. doi: 10.1007/s10455-021-09777-2

    CrossRef Google Scholar

    [9] C. Elphick, E. Tirapegui, M.E. Brachet, P. Coullet and G. Iooss, A simple global characterization for normal forms of singular vector fields, Physica D, 1987, 29(1–2), 95–127. doi: 10.1016/0167-2789(87)90049-2

    CrossRef Google Scholar

    [10] S. Guo, Theory and applications of equivariant normal forms and Hopf bifurcation for semilinear FDEs in Banach spaces, J. Diff. Eqs., 2022, 317, 387–421. doi: 10.1016/j.jde.2022.02.016

    CrossRef Google Scholar

    [11] G. Iooss, Global characterization of the normal form for a vector field near a closed orbit, J. Diff. Eqs., 1988, 76(1), 47–76. doi: 10.1016/0022-0396(88)90063-0

    CrossRef Google Scholar

    [12] W. Li and K. Lu, Sternberg theorems for random dynamical systems, Comm. Pure Appl. Math., 2005, 58(7), 941–988. doi: 10.1002/cpa.20083

    CrossRef Google Scholar

    [13] H. Poincaré, Les méthodes nouvelles de la mécanique céleste, vol. Ⅰ., Gauthier-Villars, Paris, 1892.

    Google Scholar

    [14] T. Wang and Z. Ren, A Siegel theorem for periodic difference systems, J. Differ. Equ. Appl., 2021, 27(5), 698–711. doi: 10.1080/10236198.2021.1935908

    CrossRef Google Scholar

    [15] J. Yang, P. Yu and M. Han, Limit cycle bifurcations near a double homoclinic loop with a nilpotent saddle of order m, J. Diff. Eqs., 2019, 266(1), 455–492. doi: 10.1016/j.jde.2018.07.042

    CrossRef Google Scholar

Article Metrics

Article views(1530) PDF downloads(297) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint