2023 Volume 13 Issue 1
Article Contents

Yanfei Dai, Minzhi Wei. EXISTENCE AND UNIQUENESS OF PERIODIC WAVES FOR A PERTURBED SEXTIC GENERALIZED BBM EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 502-525. doi: 10.11948/20220442
Citation: Yanfei Dai, Minzhi Wei. EXISTENCE AND UNIQUENESS OF PERIODIC WAVES FOR A PERTURBED SEXTIC GENERALIZED BBM EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 502-525. doi: 10.11948/20220442

EXISTENCE AND UNIQUENESS OF PERIODIC WAVES FOR A PERTURBED SEXTIC GENERALIZED BBM EQUATION

  • This paper is devoted to the existence and uniqueness of periodic waves for a perturbed sextic generalized BBM equation with weak backward diffusion and dissipation effects. By applying geometric singular perturbation theory and analyzing the perturbations of a Hamiltonian system with a hyper-elliptic Hamiltonian of degree seven, we prove the existence and uniqueness of periodic wave solutions with each wave speed in an open interval. It is also proved that the periodic wave solution persists for any energy parameter $h$ in an open interval and sufficiently small perturbation parameter. Furthermore, we prove that the wave speed $c_0(h)$ is strictly monotonically increasing with respect to $h$ by analyzing Abelian integral having three generating elements. Moreover, the upper and lower bounds of the limiting wave speed are obtained.

    MSC: 34C25, 34C60, 37C27
  • 加载中
  • [1] Y. An, M. Han, On the number of limit cycles near a homoclinic loop with a nilpotent singular point, J. Diff. Eqs., 2015, 258(9), 3194–3247. doi: 10.1016/j.jde.2015.01.006

    CrossRef Google Scholar

    [2] T. Benjamin, J. Bona, J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. R. Soc. Lond. A, 1972, 272(1220), 47–78. doi: 10.1098/rsta.1972.0032

    CrossRef Google Scholar

    [3] C. Besse, B. Mésognon-Gireau, P. Noble, Artificial boundary conditions for the linearized Benjamin-Bona-Mahony equation, Numer. Math., 2018, 139(2), 281–314. doi: 10.1007/s00211-017-0943-1

    CrossRef Google Scholar

    [4] A. Biswas, 1-Soliton solution of Benjamin-Bona-Mahoney equation with dual-power law nonlinearity, Commun. Non. Sci Numer. Simul., 2010, 15(10), 2744–2746. doi: 10.1016/j.cnsns.2009.10.023

    CrossRef Google Scholar

    [5] R. Camassa and D. Holm, An integrable shallow wave equation with peaked solitons, Phys. Rev. Lett., 1993, 71(11), 1661–1664. doi: 10.1103/PhysRevLett.71.1661

    CrossRef Google Scholar

    [6] A. Chen, L. Guo, X. Deng, Existence of solitary waves and periodic waves for a perturbed generalized BBM equation, J. Diff. Equat., 2016, 261(10), 5324–5349. doi: 10.1016/j.jde.2016.08.003

    CrossRef Google Scholar

    [7] A. Chen, L. Guo and W. Huang, Existence of kink waves and periodic waves for a perturbed defocusing mKdV equation, Qual. Theory Dyn. Syst., 2018, 17(3), 495–517. doi: 10.1007/s12346-017-0249-9

    CrossRef Google Scholar

    [8] G. Collins, The calculation of multivariate polynomial resultants, J. Assoc. Comput. Mach., 1971, 18(4), 515–532. doi: 10.1145/321662.321666

    CrossRef Google Scholar

    [9] Y. Dai, M. Wei, M. Han, Periodic waves for a perturbed generalized BBM equation, preprint.

    Google Scholar

    [10] Y. Dai, Y. Zhao, B. Sang, Four limit cycles in a predator-prey system of Leslie type with generalized Holling type III functional response, Nonlinear Anal. Real World Appl., 2019, 50, 218-239. doi: 10.1016/j.nonrwa.2019.04.003

    CrossRef Google Scholar

    [11] G. Derks and S. van Gils, On the uniqueness of traveling waves in perturbed Korteveg-deVries equations, Japan J. Indust. Appl. Math., 1993, 10(3), 413–430. doi: 10.1007/BF03167282

    CrossRef Google Scholar

    [12] X. Fan and L. Tian, The existence of solitary waves of singularly perturbed mKdV-KS equation, Chaos Solitons Fractals, 2005, 26(4), 1111–1118. doi: 10.1016/j.chaos.2005.02.014

    CrossRef Google Scholar

    [13] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Equat., 1979, 31(1), 53–98. doi: 10.1016/0022-0396(79)90152-9

    CrossRef Google Scholar

    [14] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäser, Boston, 1994.

    Google Scholar

    [15] M. Grau, F. Mañsas, J. Villadelprat, A Chebyshev criterion for Abelian integrals, Trans. Am. Math. Soc., 2011, 363(1), 109–129. doi: 10.1090/S0002-9947-2010-05007-X

    CrossRef Google Scholar

    [16] A. Green and P. Naghdi, A derivation of equations for wave propagation in water of variable depth, J. Fluid. Mech., 1976, 78(02), 237–246. doi: 10.1017/S0022112076002425

    CrossRef Google Scholar

    [17] L. Guo and Y. Zhao, Existence of periodic waves for a perturbed quintic BBM equation, Discrete Contin. Dyn. Syst. Ser. B, 2020, 40(8), 46894703.

    Google Scholar

    [18] M. Han, Bifurcation theory and periodical solution of dynamic system, Science Press, Beijing, 2002.

    Google Scholar

    [19] M. Han, Bifurcation theory of limit cycles, Science Press, Beijing, 2013.

    Google Scholar

    [20] M. Han, J. Yang, The maximum number of zeros of functions with parameters and application to differential equations, Journal of Nonlinear Modeling and Analysis, 2021, 3(1), 13–34.

    Google Scholar

    [21] M. Han, J. Yang, D. Xiao, Limit cycle bifurcations near a double homoclinic loop with a nilpotent saddle, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2012, 22(8), 1250189-1-33. doi: 10.1142/S0218127412501891

    CrossRef Google Scholar

    [22] M. Han, P. Yu, Normal forms, Melnikov functions and bifurcations of limit cycles, Springer, New York, 2012.

    Google Scholar

    [23] C. Jones, Geometric singular perturbation theory: Dynamic systems, Lecture Notes in Math., Springer, Berlin, 1995, 1609, 44–118.

    Google Scholar

    [24] S. Karlin, W. Studden, Tchebycheff systems: with applications in analysis and statistics, J. Amer. Statis. Assoc., 1967, 62(319), 1093.

    Google Scholar

    [25] D. Korteweg and G. de Vries, On the change of form of the long waves advancing in a rectangular canal, and on a new type of stationary waves, Philos. Mag., 1895, 39(240), 422–443. doi: 10.1080/14786449508620739

    CrossRef Google Scholar

    [26] F. Li, H. Li, Y. Liu, New double bifurcation of nilpotent focus, Int. J. Bifurcation Chaos, 2021, 31(4), 2150053. doi: 10.1142/S021812742150053X

    CrossRef Google Scholar

    [27] Y. Liu, F. Li, Double bifurcation of nilpotent focus, Int. J. Bifurcation Chaos, 2015, 25(03), 1550036. doi: 10.1142/S0218127415500364

    CrossRef Google Scholar

    [28] X. Lu, L. Lu, A. Chen, New peakons and periodic peakons of the modified Camassa-Holm equation, Journal of Nonlinear Modeling and Analysis, 2020, 2(3), 345–353.

    Google Scholar

    [29] F. Mañosas, J. Villadelprat, Bounding the number of zeros of certain Abelian integrals, J. Diff. Equat., 2011, 251(6), 1656–1669. doi: 10.1016/j.jde.2011.05.026

    CrossRef Google Scholar

    [30] S. Micu, On the controllability of the linearized Benjamin-Bona-Mahony equation, SIAM J. Control. Optim., 2001, 39(6), 1677–1696. doi: 10.1137/S0363012999362499

    CrossRef Google Scholar

    [31] D. Novaes and J. Torregrosa, On extended chebyshev systems with positive accuracy, J. Math. Anal. Appl., 2017, 448(1), 171–186. doi: 10.1016/j.jmaa.2016.10.076

    CrossRef Google Scholar

    [32] T. Ogawa, Traveling wave solutions to a perturbed Korteweg-de Vries equation, Hiroshima Math. J., 1994, 24(2), 401–422.

    Google Scholar

    [33] K. Omrani, The convergence of fully discrete Galerkin approximations for the Benjamin-Bona-Mahony (BBM) equation, Appl. Math. Comput., 2006, 180(2), 614–621.

    Google Scholar

    [34] K. Singh, R. Gupta, S. Kumar, Benjamin-Bona-Mahony (BBM) equation with variable coefficients: similarity reductions and Painlevé analysis, Appl. Math. Comput., 2011, 217(16), 7021–7027.

    Google Scholar

    [35] X. Sun, P. Yu, Periodic travelling waves in a generalized BBM equation with weak backward diffusion and dissipation terms, Discrete Contin. Dyn. Syst. Ser. B, 2019, 24(2), 965–987.

    Google Scholar

    [36] J. Wang, M. Yuen, L. Zhang, Persistence of solitary wave solutions to a singularly perturbed generalized mKdV equation, Appl. Math. Lett., 2022, 124, 107668. doi: 10.1016/j.aml.2021.107668

    CrossRef Google Scholar

    [37] J. Wang, L. Zhang, E. Shchepakina, et al., Solitary waves of singularly perturbed generalized KdV equation with high order nonlinearity, Discrete Contin. Dyn. Syst. Ser. S, 2022, doi: 10.3934/dcdss.2022124.

    CrossRef Google Scholar

    [38] A. Wazwaz, Exact solution with compact and noncompact structures for the one-dimensional generalized Benjamin-Bona-Mahony equation, Commun. Non. Sci. Numer. Simulat., 2005, 10(8), 855–867. doi: 10.1016/j.cnsns.2004.06.002

    CrossRef Google Scholar

    [39] W. Yan, Z. Liu, Y. Liang, Existence of solitary waves and periodic waves to a perturbed generalized KdV equation, Math. Model. Anal., 2014, 19(4), 537–555. doi: 10.3846/13926292.2014.960016

    CrossRef Google Scholar

    [40] P. Yu, F. Li, Bifurcation of limit cycles in a cubic-order planar system around a nilpotent critical point, J. Math. Anal. Appl., 2017, 453(2), 645–667. doi: 10.1016/j.jmaa.2017.04.019

    CrossRef Google Scholar

    [41] H. Zang, M. Han, D. Xiao, On Melnikov functions of a homoclinic loop through a nilpotent saddle for planar near-Hamiltonian systems, J. Differential Equations, 2008, 245(4), 1086–1111. doi: 10.1016/j.jde.2008.04.018

    CrossRef Google Scholar

    [42] X. Zhang, Homoclinic, heteroclinic and periodic orbits of singularly perturbed systems, Sci. China. Math., 2019, 62(9), 1687–1704. doi: 10.1007/s11425-017-9223-6

    CrossRef Google Scholar

    [43] L. Zhang, M. Han, M. Zhang, et al. A new type of solitary wave solution of the mKdV equation under singular perturbations, Int. J. Bifurcation Chaos, 2020, 30(11), 2050162. doi: 10.1142/S021812742050162X

    CrossRef Google Scholar

    [44] L. Zhang, Y. Wang, C. Khalique, et al., Peakon and cuspon solutions of a generalized Camassa-Holm-Novikov equation, J. Appl. Anal. Comput., 2018, 8(6), 1938–1958.

    Google Scholar

    [45] L. Zhang, Y. Wang, C. Khalique, et al., New type of solitary wave solution with coexisting crest and trough for a perturbed wave equation, Nonlinear Dyn., 2021, 106(4), 3479–3493. doi: 10.1007/s11071-021-06975-2

    CrossRef Google Scholar

    [46] X. Zhao, W. Xu, S. Li, et al., Bifurcations of traveling wave solutions for a class of the generalized Benjamin-Bona-Mahony equation, Appl. Math. Comput., 2006, 175(2), 1760–1774.

    Google Scholar

    [47] X. Zhao, H. Jia, H. Zhou, et al., Bifurcations of travelling wave solutions in a non-linear dispersive equation, Chaos Solitons Fractals, 2008, 37(2), 525–531. doi: 10.1016/j.chaos.2006.09.028

    CrossRef Google Scholar

    [48] K. Zhu, Y. Wu, Z. Yu, et al., New solitary wave solutions in a perturbed generalized BBM equation, Nonlinear Dyn., 2019, 97(4), 2413–2423. doi: 10.1007/s11071-019-05137-9

    CrossRef Google Scholar

    [49] K. Zhuang, Z. Du, X. Lin, Solitary waves solutions of singularly perturbed higher-order KdV equation via geometric singular perturbation method, Nonlinear Dyn., 2015, 80(1–2), 629–635.

    Google Scholar

Figures(1)

Article Metrics

Article views(2303) PDF downloads(514) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint