2023 Volume 13 Issue 1
Article Contents

Lili Jia, Xiaojuan Zhao, Changyou Wang, Qiyu Wang. DYNAMIC BEHAVIOR OF A SEVEN-ORDER FUZZY DIFFERENCE EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 486-501. doi: 10.11948/20220340
Citation: Lili Jia, Xiaojuan Zhao, Changyou Wang, Qiyu Wang. DYNAMIC BEHAVIOR OF A SEVEN-ORDER FUZZY DIFFERENCE EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 486-501. doi: 10.11948/20220340

DYNAMIC BEHAVIOR OF A SEVEN-ORDER FUZZY DIFFERENCE EQUATION

  • In this paper, we explore the qualitative features of a seven-order fuzzy difference equation

    $x_{n+1}=\frac{A x_{n-1}}{B+C x_{n-2}^{p} x_{n-4}^{q} x_{n-6}^{r}}, n=0, 1, 2, \cdots, $

    here the parameters $A, B, C$ $\in$ $R$$_f^+$, $p, q, r$ $\in$ $R$$^+$ and the initial values $x$$_{-6}$, $\cdots$, $x$$_{-1}$, $x$$_{0}$$\in$ $R$$_f^+$. Utilizing the fuzzy sets theory, linearization method, mathematical induction and inequality technique, we obtain some sufficient condition on the qualitative features including the boundedness of the positive solution of the equation and the stability and instability of the equilibrium point of the equation. Moreover, two simulation examples are presented to verify the effectiveness of our proposed results.

    MSC: 39A10
  • 加载中
  • [1] R. Abo-Zeid, Global behavior of a higher order difference equation, Mathematica Slovaca, 2014, 64(4), 931–940.

    Google Scholar

    [2] R. Abo-Zeid, On the oscillation of a third order rational difference equation, Journal of the Egyptian Mathematical Society, 2015, 23(1), 62–66. doi: 10.1016/j.joems.2014.03.001

    CrossRef Google Scholar

    [3] R. Abo-Zeid, On the solutions of a higher order difference equation, Georgian Mathematical Journal, 2020, 27(2), 165–175. doi: 10.1515/gmj-2018-0008

    CrossRef Google Scholar

    [4] A. M. Ahmed and H. M. Rezk, On the dynamics of the recursive sequence $x_{n+1}=b x_{n-1} /\left(A+B x_{n}^{p} x_{n-2}^{q}\right)$, Journal of Pure and Applied Mathematics: Advances and Applications, 2009, 1(2), 215–223.

    $x_{n+1}=b x_{n-1} /\left(A+B x_{n}^{p} x_{n-2}^{q}\right)$" target="_blank">Google Scholar

    [5] F. Belhannache, Asymptotic stability of a higher order rational difference equation, Electronic Journal of Mathematical Analysis and Applications, 2019, 7(2), 1–8.

    Google Scholar

    [6] K. A. Chrysafifis, B. K. Papadopoulos and G. Papaschinopoulos, On the fuzzy difference equations of finance, Fuzzy Sets and Systems, 2008, 159(24), 3259–3270. doi: 10.1016/j.fss.2008.06.007

    CrossRef Google Scholar

    [7] I. Dekkar, N. Touafek and Q. Din, On the global dynamics of a rational difference equation with periodic coefficients, Journal of Applied Mathematics and Computing, 2019, 60(1–2), 567–588.

    Google Scholar

    [8] D. S. Dilip, A. Kılıçman and S. C. Babu, Asymptotic and boundedness behaviour of a rational difference equation, Journal of Difference Equations and Applications, 2019, 25(3), 305–312. doi: 10.1080/10236198.2019.1568424

    CrossRef Google Scholar

    [9] M. E. Erdogan and K. Uslu, On the dynamics of the difference equation $ x_{n+1}=\alpha x_{n-3} /\left(\beta+\gamma x_{n} x_{n-1} x_{n-2} x_{n-3}\right) $, International Journal of Engineering and Applied Sciences, 2016, 3(7), 80–82.

    $x_{n+1}=\alpha x_{n-3} /\left(\beta+\gamma x_{n} x_{n-1} x_{n-2} x_{n-3}\right) $" target="_blank">Google Scholar

    [10] Y. Halim and J. F. T. Rabago, On the solutions of a second-order difference equation in terms of generalized Padovan sequences, Mathematica Slovaca, 2018, 68(3), 625–638. doi: 10.1515/ms-2017-0130

    CrossRef Google Scholar

    [11] L. Jia, C. Wang, X. Zhao and W. Wei, Dynamic behavior of a fractional-type fuzzy difference system, symmetry, 2022, 14(7), Article ID: 1337. doi: 10.3390/sym14071337

    CrossRef Google Scholar

    [12] S. Kalabu$\breve{\text{s}}$ić, M. R. S. Kulenović and C. B. Overdeep, Dynamics of the recursive sequence $x_{n+1}=\left(\beta x_{n-l}+\delta x_{n-k}\right) /\left(B x_{n-l}+D x_{n-k}\right)$, Journal of Difference Equations and Applications, 2004, 10(10), 915–928. doi: 10.1080/10236190410001731425

    CrossRef $x_{n+1}=\left(\beta x_{n-l}+\delta x_{n-k}\right) /\left(B x_{n-l}+D x_{n-k}\right)$" target="_blank">Google Scholar

    [13] M. A. Kerker, E. Hadidi and A. Salmi, Qualitative behavior of a higher-order nonautonomous rational difference equation, Journal of Applied Mathematics and Computing, 2020, 64(1), 399–409.

    Google Scholar

    [14] A. Khastan, New solutions for first order linear fuzzy difference equations, Journal of Computational and Applied Mathematics, 2017, 312, 156–166. doi: 10.1016/j.cam.2016.03.004

    CrossRef Google Scholar

    [15] A. Khastan and Z. Alijani, On the new solutions to the fuzzy difference equation $x_{n+1}=A+B / x_{n}$, Fuzzy Sets and Systems, 2019, 358, 64–83. doi: 10.1016/j.fss.2018.03.014

    CrossRef $x_{n+1}=A+B / x_{n}$" target="_blank">Google Scholar

    [16] Z. Li, Y. Jiang, C. Hu, et al., Difference equation based empirical mode decomposition with application to separation enhancement of multi-fault vibration signals, Journal of Difference Equations and Applications, 2017, 23(1–2), 457–467.

    Google Scholar

    [17] J. Liu, P. Wang, Y. Huang, et al., Power load combination forecasting based on triangular fuzzy discrete difference equation forecasting model and PSO-SVR, Journal of Intelligent & Fuzzy Systems, 2019, 36(6), 5889–5898.

    Google Scholar

    [18] G. Papaschinopoulos, C. J. Schinas and G. Ellina, On the dynamics of the solutions of a biological model, Journal of Difference Equations and Applications, 2014, 20(5–6), 694–705.

    Google Scholar

    [19] M. Saleh, N. Alkoumi and A. Farhat, On the dynamics of a rational difference equation $x_{n+1}=\left(\alpha+\beta x_{n}+\gamma x_{n k-k}\right) /\left(B x_{n}+C x_{n-k}\right)$, Chaos, Solitons & Fractals, 2017, 96, 76–84.

    $x_{n+1}=\left(\alpha+\beta x_{n}+\gamma x_{n k-k}\right) /\left(B x_{n}+C x_{n-k}\right)$" target="_blank">Google Scholar

    [20] M. Saleh and S. Hirzallah, Dynamics and bifurcation of a second order rational difference equation with quadratic terms, Journal of Applied Nonlinear Dynamics, 2021, 10(3), 561–576.

    Google Scholar

    [21] H. Sedaghat, Nonlinear Difference Equations: Theory with Applications to Social Science Models, Kluwer Academic Publishers, Dordrecht, 2003.

    Google Scholar

    [22] G. Stefanidou and G. Papaschinopoulos, The periodic nature of the positive solutions of a nonlinear fuzzy max-difference equation, Information Sciences, 2006, 176(24), 3694–3710. doi: 10.1016/j.ins.2006.02.006

    CrossRef Google Scholar

    [23] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy sets and systems, 2010, 161(11), 1564–1584. doi: 10.1016/j.fss.2009.06.009

    CrossRef Google Scholar

    [24] S. Stević, On the difference equation $x_{n}=x_{n-k} /\left(b+c x_{n-1} \cdots x_{n-k}\right)$, Applied Mathematics and Computation, 2012, 218(11), 6291–6296. doi: 10.1016/j.amc.2011.11.107

    CrossRef $x_{n}=x_{n-k} /\left(b+c x_{n-1} \cdots x_{n-k}\right)$" target="_blank">Google Scholar

    [25] G. Su, T. Sun and B. Qin, Global Behavior of a higher order fuzzy difference equation, Mathematics, 2019, 7(10), Article ID: 938. doi: 10.3390/math7100938

    CrossRef Google Scholar

    [26] C. Wang and J. Li, Periodic Solution for a Max-Type Fuzzy Difference Equation, Journal of Mathematics, 2020, 2020, Article ID: 3094391.

    Google Scholar

    [27] C. Wang, J. Li and L. Jia, Dynamics of a high-order nonlinear fuzzy difference equation, Journal of Applied Analysis and Computation, 2021, 11(1), 404–421. doi: 10.11948/20200050

    CrossRef Google Scholar

    [28] C. Wang, X. Zhao, L. Jia and T. Jiang, Existence and uniqueness of solution for a class of seven-order exponential fuzzy difference equations, Journal of Applied Mathematics and Computation, 2022, 6(1), 66–70. doi: 10.26855/jamc.2022.03.009

    CrossRef Google Scholar

    [29] R. Willox, B. Grammaticos, A. S. Carstea and A. Ramani, Epidemic dynamics: discrete-time and cellular automaton models, Physica A: Statistical Mechanics and its Applications, 2003, 328(1–2), 13–22.

    Google Scholar

    [30] Q. Yang, J. Tian and W. Si, An improved particle swarm optimization based on difference equation analysis, Journal of Difference Equations and Applications, 2017, 23(1–2), 135–152.

    Google Scholar

    [31] Q. Zhang, F. Lin and X. Zhong, On discrete time Beverton-Holt population model with fuzzy environment, Mathematical Biosciences and Engineering, 2019, 16(3), 1471–1488. doi: 10.3934/mbe.2019071

    CrossRef Google Scholar

    [32] Q. Zhang, O. Miao, F. Lin and Z. Zhang, On discrete-time laser model with fuzzy environmen, AIMS Mathematics, 2021, 6(4), 3105–3120. doi: 10.3934/math.2021188

    CrossRef Google Scholar

    [33] Q. Zhang, W. Zhang, F. Lin, et al., On dynamic behavior of second-order exponential-type fuzzy difference equation, Fuzzy Sets and Systems, 2021, 419, 169–187. doi: 10.1016/j.fss.2020.07.021

    CrossRef Google Scholar

Figures(7)

Article Metrics

Article views(2117) PDF downloads(514) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint