Citation: | Yitong Pei, Shasha Bian, Boling Guo, Wuming Liu. A NONHOMOGENEOUS BOUNDARY-VALUE PROBLEM FOR THE MODIFIED ANISOTROPIC HEISENBERG SPIN CHAIN POSED ON A FINITE DOMAIN[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 470-485. doi: 10.11948/20220302 |
This article is concerned with the Modified Anisotropic Heisenberg Spin Chain. We prove that the associated nonhomogeneous initial-boundary value problem has a unique globally smooth solution in $H^{2k+1}(m, n)$ for $k\geq 1$. Our main new ingredient is a technique of spatial difference and crucial uniformed estimates of the step-size $h.$ Meanwhile, to prove the global existence, we overcome drawbacks which are not exist in corresponding Cauchy problem.
[1] | K. D. Archan and R. C. A., On the inverse problem and prolongation structure for the modifed anisotropic Heisenberg spin chain, J. Math. Phys., 1987, 28, 319–322. doi: 10.1063/1.527828 |
[2] | F. Alouges and A. Soyeur, On global weak solutions for Landau-Lifshitz equations: existence and nonuniquness, Nonlinear Analysis, 1992, 18, 1071–1084. doi: 10.1016/0362-546X(92)90196-L |
[3] | R. K. Bullough, Soliton–current topics in physics, Springer, Berlin, 1980. |
[4] | A. Berti and C. Giorgi, Derivation of the Landau-Lifshitz-Bloch equation from continuum thermodynamics, Phys. B., 2016, 500, 142–153. doi: 10.1016/j.physb.2016.07.035 |
[5] | T. Buckmaster and V. Vicol, Nonuniqueness of weak solutions to the Navier-Stokes equation, Annals of Mathematics, 2019, 89, 101–144. |
[6] | G. Carbou and P. Fabrie, Regular solutions for Landau-Lifshitz equation in $\mathbb{R}^{3}$, Commun. Appl. Anal., 2001, 5(1), 17–30. |
[7] | G. Carbou and P. Fabrie, Regular solutions for Landau-Lifshitz equation in a bounded domain, Differ. Integral Equ., 2001, 14(2), 213–229. |
[8] | R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris, Solitons and nonlinear wave equations, Academic, New York, 1982. |
[9] | A. Friedman, Partial Differential Equations, Holt, Rinehadt and Winston, 1969. |
[10] | H. C. Fogedby, Theoretical aspects of mainly low dimensional magnetic systems, Lecture Notes in Physics, 1982, 131. |
[11] | S. Klainerman and G. Ponce, Global, small amplitude solutions to nonlinear evolution equations Commun. Pure Appl. Math., 1983, 37, 133–141. |
[12] | B. Kuperschmidt, Integrable and superintegrable systems Los Alamos National Laboratory, 1981. |
[13] | Q. Li, B. Guo, F. Liu and W. Liu, Weak and strong solutions to Landau-Lifshitz-Bloch-Maxwell equations with polarization, J. Differ. Equ., 2021, 286, 47–83. doi: 10.1016/j.jde.2021.02.042 |
[14] | B. Li and M. Han, Exact peakon solutions given by the generalized hyperbolic functions for some nonlinear wave equations, Journal of Applied Analysis and Computation, 2020, 10(4), 1708–1719. doi: 10.11948/20200139 |
[15] | K. Ngan Le, Weak solutions of the Landau-Lifshitz-Bloch equation, Journal of Differential Equation, 2016, 261, 6699–6717. doi: 10.1016/j.jde.2016.09.002 |
[16] | S. Tan, Solution to the modified anisotropic Heisenberg spin chain, Journal of Mathematical Research Exposition, 1993, 13, 203–213. |
[17] | T. Tao and L. Zhang, On the continous periodic weak solutions of Boussinesq equations, SIAM J. Math. Anal., 2018, 50(1), 1120–1162. doi: 10.1137/17M1115526 |
[18] | Y. Zhou, B. Guo and S. Tan, Existence and uniqueness of smooth solution for system of ferromagnetic, Science in China A, 1991, 34, 257–266. |
[19] | Y. Zhou, Finite Difference Solutions of the Nonlinear Mutual Boundary Problems for the Systems of Ferro-Magnetic Chain J. C. M., 1984, 2, 276–281. |