2023 Volume 13 Issue 6
Article Contents

Mohammed Abdel-Aty, Mohammed Abdou. ANALYTICAL AND NUMERICAL DISCUSSION FOR THE PHASE-LAG VOLTERRA-FREDHOLM INTEGRAL EQUATION WITH SINGULAR KERNEL[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3203-3220. doi: 10.11948/20220547
Citation: Mohammed Abdel-Aty, Mohammed Abdou. ANALYTICAL AND NUMERICAL DISCUSSION FOR THE PHASE-LAG VOLTERRA-FREDHOLM INTEGRAL EQUATION WITH SINGULAR KERNEL[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3203-3220. doi: 10.11948/20220547

ANALYTICAL AND NUMERICAL DISCUSSION FOR THE PHASE-LAG VOLTERRA-FREDHOLM INTEGRAL EQUATION WITH SINGULAR KERNEL

  • In this paper, we studied the existence and unique solution of the Volterra-Fredholm integral equation of the second kind (V-FIESK). The general singular kernel is considered to be in position with the Fredholm integral term. Singular kernel will tend to a logarithmic function under exceptional conditions and new discussions. The Volterra-Fredholm integral equation with the logarithmic form will be solved using Legendre polynomials, where the kernel of Volterra integral term is a positive continuous function in time. A system of infinite linear algebraic equations is obtained by solving the problem in series, where the convergence of this system is discussed. Finally, The error is calculated using Maple software after the numerical results have been acquired.

    MSC: 45E99, 46B45, 65R20
  • 加载中
  • [1] M. A. Abdel-Aty, M. A. Abdou and A. A. Soliman, Solvability of quadratic integral equations with singular kernel, J. of Contemporary Mathematical Analysis, 2022, 57(1), 12-25. DOI: 10.3103/S1068362322010022.

    CrossRef Google Scholar

    [2] M. A. Abdou, M. E. Nasr and M. A. Abdel-Aty, A study of normality and continuity for mixed integral equations, J. of Fixed Point Theory Appl., 2018, 20(1), 1-19. doi: 10.1007/s11784-018-0489-6

    CrossRef Google Scholar

    [3] M. A. Abdou, A. A. Soliman and M. A. Abdel–Aty, Analytical results for quadratic integral equations with phase–lag term, J. of Applied Analysis & Computation, 2020, 20(4), 1588-1598. DOI: 10.11948/20190279.

    CrossRef Google Scholar

    [4] H. Adibi and P. Assari, Chebyshev wavelet method for numerical solution of Fredholm integral equations of the first kind, Math. Probl. Eng., 2010, 2010, 1-17. DOI: 10.1155/2010/138408.

    CrossRef Google Scholar

    [5] A. Akbarzadeh, J. Fu and Z. Chen, Three-phase-lag heat conduction in a functionally graded hollow cylinder, Trans. Can. Soc. Mech. Eng., 2014, 38(1), 155-171. DOI: 10.1139/tcsme-2014-0010.

    CrossRef Google Scholar

    [6] S. András, Weakly singular Volterra and Fredholm-Volterra integral equations, Stud. Univ. Babes-Bolyai Math., 2003, 48(3), 147-155.

    Google Scholar

    [7] N. K. Artiunian, Plane contact problem of the theory of creef, Appl. Math. Mech., 1959, 23, 901-923.

    Google Scholar

    [8] K. E. Atkinson, The Numerical Solution of Integral Equation of the Second Kind, Cambridge Monographs on Applied and Computational Mathematics, 1997.

    Google Scholar

    [9] Z. Avazzadeh and M. Heydari, Chebyshev polynomials for solving two dimensional linear and nonlinear integral equations of the second kind, Comput. Appl. Math., 2012, 31(1), 127-142. DOI: 10.1590/S1807-03022012000100007.

    CrossRef Google Scholar

    [10] E. Babolian, K. Maleknejad, M. Mordad and B. Rahimi, A numerical method for solving Fredholm-Volterra integral equations in two-dimensional spaces using block pulse functions and an operational matrix, J. Comput. Appl. Math., 2011, 235(14), 3965-3971. DOI: 10.1016/j.cam.2010.10.028.

    CrossRef Google Scholar

    [11] E. Babolian and A. Shahsavaran, Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets, J. Comput. Appl. Math., 2009, 225(1), 87-95. DOI: 10.1016/j.cam.2008.07.003.

    CrossRef Google Scholar

    [12] H. Brunner, On the numerical solution of nonlinear Volterra-Fredholm integral equations by collocation methods, SIAM J. Numer. Anal., 1990, 27(4), 987-1000. DOI: 10.1137/0727057.

    CrossRef Google Scholar

    [13] S. Chiriţă, On the time differential dual-phase-lag thermoelastic model, Meccanica, 2017, 52(1-2), 349-361. DOI: 10.1007/s11012-016-0414-2.

    CrossRef Google Scholar

    [14] L. M. Delves and J. L. Mohamed, Computational Methods for Integral Equations, New York, London, Cambridge, 1985.

    Google Scholar

    [15] R. O. A. El-Rahman, General formula of linear mixed integral equation with weak singular kernel, IOSR Journal of Mathematics, 2016, 12(4), 31-38. doi: 10.9790/5728-1204023138

    CrossRef Google Scholar

    [16] A. M. A. El-Sayed, H. H. G. Hashem and Y. M. Y. Omar, Positive continuous solution of a quadratic integral equation of fractional orders, Math. Sci. Lett., 2013, 2(1), 19-27. DOI: 10.12785/msl/020103.

    CrossRef Google Scholar

    [17] H. Fatahi, J. Saberi-Nadjafi and E. Shivanian, A new spectral meshless radial point interpolation(SMRPI) method for the two-dimensional Fredholm integral equations on general domains with error analysis, J. Comput. Appl. Math., 2016, 294, 196-209. DOI: 10.1016/j.cam.2015.08.018.

    CrossRef Google Scholar

    [18] I. C. Gredshtein and I. M. Ryzhik, Integrals Tables, Summation, Series and Derivatives, Fizmatgiz, Moscow, 1971.

    Google Scholar

    [19] C. D. Green, Integral Equation Methods, Nelsson, New York, 1969.

    Google Scholar

    [20] M. S. Hashmi, N. Khan and S. Iqbal, Numerical solutions of weakly singular Volterra integral equations using the optimal homotopy asymptotic method, Comput. Math. Appl., 2012, 64(6), 1567-1574. DOI: 10.1016/j.camwa.2011.12.084.

    CrossRef Google Scholar

    [21] M. G. Krein, On a method for the effective solution of the inverse boundary problem, Dokl. Acad. Nauk. Ussr., 1954, 94(6).

    Google Scholar

    [22] N. N. Lebedev, Special Functions and their Applications, Dover, New York, 1972.

    Google Scholar

    [23] S. Micula, On some iterative numerical methods for a Volterra functional integral equation of the second kind, J. of Fixed Point Theory Appl., 2017, 19(3), 1815-1824. DOI: 10.1007/s11784-016-0336-6.

    CrossRef Google Scholar

    [24] S. Micula, An iterative numerical method for fredholm-volterra integral equations of the second kind, appl. math. Comput., 2015, 270(1), 935-942. DOI: 10.1016/j.amc.2015.08.110.

    CrossRef Google Scholar

    [25] F. Mirzaee and E. Hadadiyan, Application of modified hat functions for solving nonlinear quadratic integral equations, Iran J. Numer. Anal. Opt., 2016, 6(2), 65-84. DOI: 10.22067/ijnao.v6i2.46565.

    CrossRef Google Scholar

    [26] N. I. Muskhelishvili, Singular Integral Equations, Noordhoff, Leiden, 1953.

    Google Scholar

    [27] M. E. Nasr and M. A. Abdel-Aty, Analytical discussion for the mixed integral equations, J. of Fixed Point Theory Appl., 2018, 20(3), 1-19. DOI: 10.1007/s11784-018-0589-3.

    CrossRef Google Scholar

    [28] M. E. Nasr and M. A. Abdel-Aty, A new techniques applied to Volterra–Fredholm integral equations with discontinuous kernel, J. of Computational Analysis and Appl., 2021, 29(1), 11-24.

    Google Scholar

    [29] A. Palamora, Product integration for Volterra integral equations of the second kind with weakly singular kernels, Math. Comp., 1996, 65(215), 1201-1212.

    Google Scholar

    [30] J. Saberi-Nadjafi and A. Ghorbani, He's homotopy perturbation method: an effective tool for solving nonlinear integral and integro-differential equations, Comput. Math. Appl., 2009, 58(11-12), 2379-2390. DOI: 10.1016/j.camwa.2009.03.032.

    CrossRef Google Scholar

    [31] V. V. Ter-Avetisyan, On dual integral equations in the semiconservative case, Journal of Contemporary Mathematical Analysis, 2012, 47(2), 62-69. DOI: 10.3103/S1068362312020021.

    CrossRef Google Scholar

    [32] S. Yüzbaşl, N. Şahin and M. Sezer, Bessel polynomial solutions of high-order linear Volterra integro-differential equations, Comput. Math. Appl., 2011, 62(4), 1940-1956. DOI: 10.1016/j.camwa.2011.06.038.

    CrossRef Google Scholar

Figures(8)  /  Tables(2)

Article Metrics

Article views(1465) PDF downloads(280) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint