Citation: | Cuixia Li, Shiliang Wu. THE SHSS PRECONDITIONER FOR SADDLE POINT PROBLEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3221-3230. doi: 10.11948/20220552 |
In this paper, building on the previous published work by Li and Wu [Appl. Math, Lett., 2015, 44, 26–29], we extend the single-step HSS (SHSS) method for saddle point problems. Based on the idea of SHSS method, the SHSS preconditioner for solving saddle point problems is introduced. We discuss the spectral properties of the preconditioned matrix in detail. By some numerical experiments, we demonstrate the effectiveness of the SHSS preconditioner.
[1] | Z. Bai and G. H. Golub, Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems, IMA Journal of Numerical Analysis, 2007, 27, 1-23. doi: 10.1093/imanum/drl017 |
[2] | Z. Bai, G. H. Golub and M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM Journal on Matrix Analysis and Applications, 2003, 24, 603-626. doi: 10.1137/S0895479801395458 |
[3] | M. Benzi, A generalization of the Hermitian and skew-Hermitian splitting iteration, SIAM Journal on Matrix Analysis and Applications, 2009, 31, 360-374. doi: 10.1137/080723181 |
[4] | M. Benzi, G. H. Golub and J. Liesen, Numerical solution of saddle point problems, Acta Numerica, 2005, 14, 1-137. doi: 10.1017/S0962492904000212 |
[5] | S. Bradley and C. Greif, Eigenvalue bounds for saddle-point systems with singular leading blocks, Journal of Computational and Applied Mathematics, 2023, 424, 114996. doi: 10.1016/j.cam.2022.114996 |
[6] | S. Cafieri, M. D'Apuzzo, V. De Simone and D. Di Serafino, On the iterative solution of KKT systems in potential reduction software for large-scale quadratic problems, Computational Optimization and Applications, 2007, 38, 27-45. doi: 10.1007/s10589-007-9035-y |
[7] | H. C. Elman, Preconditioning for the steady-state Navier-Stokes equations with low viscosity, Siam Journal on Scientific Computing, 1999, 20, 1299-1316. doi: 10.1137/S1064827596312547 |
[8] | C. Greif and D. Schötzau, Preconditioners for the discretized time-harmonic Maxwell equaitons in mixed form, Numerical Linear Algebra with Applications, 2007, 14, 281-297. doi: 10.1002/nla.515 |
[9] | C. Greif and D. Schötzau, Preconditioners for saddle point linear systems with highly singular (1, 1) blocks, Electronic Transactions on Numerical Analysis, 2006, 22, 114-121. |
[10] | A. Hadjidimos and M. Tzoumas, On equivalence of three-parameter iterative methods for singular symmetric saddle-point problem, Numerical Algorithms, 2021, 86, 1391-1419. doi: 10.1007/s11075-020-00938-1 |
[11] | C. Li and S. Wu, A single-step HSS method for non-Hermitian positive definite linear systems, Applied Mathematics Letters, 2015, 44, 26-29. doi: 10.1016/j.aml.2014.12.013 |
[12] | T. Rees and C. Greif, A preconditioner for linear systems arising from interior point optimization methods, Siam Journal on Scientific Computing, 2007, 29, 1992-2007. doi: 10.1137/060661673 |
[13] | D. K. Salkuyeh, Shifted skew-symmetric/skew-symmetric splitting method and its application to generalized saddle point problems, Applied Mathematics Letters, 2020, 103, 106184. doi: 10.1016/j.aml.2019.106184 |
[14] | J. Scott and M. Tuma, A null-space approach for large-scale symmetric saddle point systems with a small and non zero (2, 2) block, Numerical Algorithms, 2022, 90, 1639-1667. doi: 10.1007/s11075-021-01245-z |
[15] | S. Vakili, G. Ebadi and C. Vuik, A parameterized extended shift-splitting preconditioner for nonsymmetric saddle point problems, IMA Journal of Numerical Analysis, 2023, 30, e2478. |
[16] | S. Wu, T. Huang and X. Zhao, A modified SSOR iterative method for augmented systems, Journal of Computational and Applied Mathematics, 2009, 228, 424-433. doi: 10.1016/j.cam.2008.10.006 |
[17] | S. Wu and C. Li, A splitting method for complex symmetric indefinite linear system, Journal of Computational and Applied Mathematics, 2017, 313, 343-354. doi: 10.1016/j.cam.2016.09.028 |
[18] | X. Xiao and X. Wang, A new single-step iteration method for solving complex symmetric linear systems, Numerical Algorithms, 2018, 78, 643-660. doi: 10.1007/s11075-017-0393-y |
[19] | X. Xiao, X. Wang and H. Yin, Efficient single-step preconditioned HSS iteration methods for complex symmetric linear systems, Computers and Mathematics with Applications, 2017, 74, 2269-2280. doi: 10.1016/j.camwa.2017.07.007 |
[20] | A. Yang, X. Li and Y. Wu, On semi-convergence of the Uzawa-HSS method for singular saddle-point problems, Applied Mathematics and Computation, 2015, 252, 88-98. doi: 10.1016/j.amc.2014.11.100 |
[21] | M. Zeng and C. Ma, A parameterized SHSS iteration method for a class of complex symmetric system of linear equations, Computers and Mathematics with Applications, 2016, 71, 2124-2131. doi: 10.1016/j.camwa.2016.04.002 |
[22] | G. Zilli and L. Bergamaschi, Block preconditioners for linear systems in interior point methods for convex constrained optimization, Annali Dell'universita Di Ferrara, 2022, 68, 337-368. doi: 10.1007/s11565-022-00422-9 |