Citation: | Jianyu Wang, Chunhua Fang, Guifeng Zhang, Zaiyun Zhang. MODIFIED COLLOCATION METHODS FOR SECOND KIND OF VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY SINGULAR HIGHLY OSCILLATORY BESSEL KERNELS[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3231-3252. doi: 10.11948/20220559 |
In this paper, we investigate the second kind of Volterra integral equations with weakly sinular highly oscillatory Bessel kernels by using two collocation methods: direct high-order interpolationorder (DO) and direct Hermite interpolation (DH). Based on hypergeometric and Gamma functions, we obtain a method for solving the modified moments $ \int_{0}^{1}x^{\alpha}(1-x)^{\beta}J_{v}(\omega x)dx $. Compared with the Filon-type $ (Q_{N}^{F}) $ method, piecewise constant collocation $ (Q_{N}^{L, 0}) $ method and linear collocation $ (Q_{N}^{L, 1}) $ method, we verified the efficiency of the method through error analysis and numerical examples.
[1] | L. R. Berrone, Local positivity of the solution to volterra integral equations and heat conduction in materials that may undergoes changes of phase, Math. Note, 1995, 38, 79-93. |
[2] | H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge university press, 2004. |
[3] | H. Brunner, Volterra Integral Equations: An Introduction to Theory and Applications, Cambridge University Press, 2017. |
[4] | H. Brunner, A. Iserles and S. Nørsett, Open Problems in the Computational Solution of Volterra Functional Equations with Highly Oscillatory Kernels, Isaac Newton Institute, HOP, 2007. |
[5] | R. Chen and C. An, On evaluation of Bessel transforms with oscillatory and algebraic singular integrands, Journal of Computational and Applied Mathematics, 2014, 264, 71-81. DOI: 10.1016/j.cam.2014.01.009. |
[6] | P. J. Davies and D. B. Duncan, Stability and convergence of collocation schemes for retarded potential integral equations, SIAM journal on numerical analysis, 2004, 42(3), 1167-1188. DOI: 10.1137/S0036142901395321. |
[7] | C. Fang, G. He and S. Xiang, Hermite-type collocation methods to solve Volterra integral equations with highly oscillatory Bessel kernels, Symmetry, 2019, 11(2), 168. DOI: 10.3390/sym11020168. |
[8] | C. Fang, J. Ma and M. Xiang, On Filon methods for a class of Volterra integral equations with highly oscillatory Bessel kernels, Applied Mathematics and Computation, 2015, 268, 783-792. DOI: 10.1016/j.amc.2015.06.111. |
[9] | J. Gao and A. Iserles, A generalization of Filon–Clenshaw–Curtis quadrature for highly oscillatory integrals, BIT Numerical Mathematics, 2017, 57(4), 943-961. DOI: 10.1007/s10543-017-0682-9. |
[10] | I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th Edn, Academic Press, New York, 2007. |
[11] |
|
[12] | H. Kang, C. Xiang, Z. Xu and H. Wang, Efficient quadrature rules for the singularly oscillatory Bessel transforms and their error analysis, Numerical Algorithms, 2021, 88(3), 1493-1521. DOI: 10.1007/s11075-021-01083-z. |
[13] | I. Kayijuka, Ş. M. Ege, A. Konuralp and F. S. Topal, Clenshaw–Curtis algorithms for an efficient numerical approximation of singular and highly oscillatory Fourier transform integrals, Journal of Computational and Applied Mathematics, 2021, 385, 113201. DOI: 10.1016/j.cam.2020.113201. |
[14] | J. Ma and H. Kang, Frequency-explicit convergence analysis of collocation methods for highly oscillatory Volterra integral equations with weak singularities, Applied Numerical Mathematics, 2020, 151, 1-12. DOI: 10.1016/j.apnum.2019.12.013. |
[15] | J. Ma and H. Liu, A well-conditioned Levin method for calculation of highly oscillatory integrals and its application, Journal of Computational and Applied Mathematics, 2018, 342, 451-462. DOI: 10.1016/j.cam.2018.03.044. |
[16] | J. Ma, S. Xiang and H. Kang, On the convergence rates of Filon methods for the solution of a Volterra integral equation with a highly oscillatory Bessel kernel, Applied Mathematics Letters, 2013, 26(7), 699-705. DOI: 10.1016/j.aml.2013.01.011. |
[17] | F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions Hardback and CD-ROM, Cambridge University Press, 2010. |
[18] | H. Teriele, Collocation methods for weakly singular second-kind Volterra integral equations with non-smooth solution, IMA Journal of Numerical Analysis, 1982, 2(4), 437-449. DOI: 10.1093/imanum/2.4.437. |
[19] | Q. Wu and W. Hou, Efficient BBFM-collocation for weakly singular oscillatory Volterra integral equations of the second kind, International Journal of Computer Mathematics, 2022, 99(5), 1022-1040. DOI: 10.1080/00207160.2021.1942460. |
[20] | S. Xiang, On van der Corput-type lemmas for Bessel and Airy transforms and applications, Journal of Computational and Applied Mathematics, 2019, 351, 179-185. DOI: 10.1016/j.cam.2018.11.007. |
[21] | S. Xiang and H. Brunner, Efficient methods for Volterra integral equations with highly oscillatory Bessel kernels, BIT Numerical Mathematics, 2013, 53(1), 241-263. DOI: 10.1007/s10543-012-0399-8. |
[22] | S. Xiang, Y. J. Cho, H. Wang and H. Brunner, Clenshaw–Curtis–Filon-type methods for highly oscillatory Bessel transforms and applications, IMA Journal of Numerical Analysis, 2011, 31(4), 1281-1314. DOI: 10.1093/imanum/drq035. |
[23] | S. Xiang, G. He and Y. J. Cho, On error bounds of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals, Advances in Computational Mathematics, 2015, 41(3), 573-597. DOI: 10.1007/s10444-014-9377-9. |
[24] | S. Xiang and K. He, On the implementation of discontinuous Galerkin methods for Volterra integral equations with highly oscillatory Bessel kernels, Applied Mathematics and Computation, 2013, 219(9), 4884-4891. DOI: 10.1016/j.amc.2012.10.073. |
[25] |
Z. Xu and S. Xiang, Computation of highly oscillatory Bessel transforms with algebraic singularities, arXiv preprint arXiv: 1605.08568, 2016. DOI: |
[26] | Q. Zhang and S. Xiang, On fast multipole methods for Volterra integral equations with highly oscillatory kernels, Journal of Computational and Applied Mathematics, 2019, 348, 535-554. DOI: 10.1016/j.cam.2018.09.009. |
The error curves with
Comparison of the error at point
The error curves with
Comparison of the error at point
The error curves with
Comparison of the error at point
The error curves with
Comparison of the error at point
The error curves with
Comparison of the error at point
The error curves with
Comparison of the error at point