2023 Volume 13 Issue 6
Article Contents

Jianyu Wang, Chunhua Fang, Guifeng Zhang, Zaiyun Zhang. MODIFIED COLLOCATION METHODS FOR SECOND KIND OF VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY SINGULAR HIGHLY OSCILLATORY BESSEL KERNELS[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3231-3252. doi: 10.11948/20220559
Citation: Jianyu Wang, Chunhua Fang, Guifeng Zhang, Zaiyun Zhang. MODIFIED COLLOCATION METHODS FOR SECOND KIND OF VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY SINGULAR HIGHLY OSCILLATORY BESSEL KERNELS[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3231-3252. doi: 10.11948/20220559

MODIFIED COLLOCATION METHODS FOR SECOND KIND OF VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY SINGULAR HIGHLY OSCILLATORY BESSEL KERNELS

  • Author Bio: Email: strwjy@163.com(J. Wang); Email: zgf011532@163.com(G. Zhang); Email: zhangzaiyun1226@126.com(Z. Zhang)
  • Corresponding author: Email: fangchunhuamath@163.com(C. Fang) 
  • Fund Project: This research was funded by Hunan Provincial Natural Science Foundation of China (Nos. 2022JJ30276, 2021JJ30297), Scientific research project of Hunan provincial department of Education (No. 22A0478), and the Science and Technology Program of Hunan Province (No. 2019TP1014)
  • In this paper, we investigate the second kind of Volterra integral equations with weakly sinular highly oscillatory Bessel kernels by using two collocation methods: direct high-order interpolationorder (DO) and direct Hermite interpolation (DH). Based on hypergeometric and Gamma functions, we obtain a method for solving the modified moments $ \int_{0}^{1}x^{\alpha}(1-x)^{\beta}J_{v}(\omega x)dx $. Compared with the Filon-type $ (Q_{N}^{F}) $ method, piecewise constant collocation $ (Q_{N}^{L, 0}) $ method and linear collocation $ (Q_{N}^{L, 1}) $ method, we verified the efficiency of the method through error analysis and numerical examples.

    MSC: 65D30, 65D32
  • 加载中
  • [1] L. R. Berrone, Local positivity of the solution to volterra integral equations and heat conduction in materials that may undergoes changes of phase, Math. Note, 1995, 38, 79-93.

    Google Scholar

    [2] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge university press, 2004.

    Google Scholar

    [3] H. Brunner, Volterra Integral Equations: An Introduction to Theory and Applications, Cambridge University Press, 2017.

    Google Scholar

    [4] H. Brunner, A. Iserles and S. Nørsett, Open Problems in the Computational Solution of Volterra Functional Equations with Highly Oscillatory Kernels, Isaac Newton Institute, HOP, 2007.

    Google Scholar

    [5] R. Chen and C. An, On evaluation of Bessel transforms with oscillatory and algebraic singular integrands, Journal of Computational and Applied Mathematics, 2014, 264, 71-81. DOI: 10.1016/j.cam.2014.01.009.

    CrossRef Google Scholar

    [6] P. J. Davies and D. B. Duncan, Stability and convergence of collocation schemes for retarded potential integral equations, SIAM journal on numerical analysis, 2004, 42(3), 1167-1188. DOI: 10.1137/S0036142901395321.

    CrossRef Google Scholar

    [7] C. Fang, G. He and S. Xiang, Hermite-type collocation methods to solve Volterra integral equations with highly oscillatory Bessel kernels, Symmetry, 2019, 11(2), 168. DOI: 10.3390/sym11020168.

    CrossRef Google Scholar

    [8] C. Fang, J. Ma and M. Xiang, On Filon methods for a class of Volterra integral equations with highly oscillatory Bessel kernels, Applied Mathematics and Computation, 2015, 268, 783-792. DOI: 10.1016/j.amc.2015.06.111.

    CrossRef Google Scholar

    [9] J. Gao and A. Iserles, A generalization of Filon–Clenshaw–Curtis quadrature for highly oscillatory integrals, BIT Numerical Mathematics, 2017, 57(4), 943-961. DOI: 10.1007/s10543-017-0682-9.

    CrossRef Google Scholar

    [10] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th Edn, Academic Press, New York, 2007.

    Google Scholar

    [11] http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F3/06/02/03/01/.

    Google Scholar

    [12] H. Kang, C. Xiang, Z. Xu and H. Wang, Efficient quadrature rules for the singularly oscillatory Bessel transforms and their error analysis, Numerical Algorithms, 2021, 88(3), 1493-1521. DOI: 10.1007/s11075-021-01083-z.

    CrossRef Google Scholar

    [13] I. Kayijuka, Ş. M. Ege, A. Konuralp and F. S. Topal, Clenshaw–Curtis algorithms for an efficient numerical approximation of singular and highly oscillatory Fourier transform integrals, Journal of Computational and Applied Mathematics, 2021, 385, 113201. DOI: 10.1016/j.cam.2020.113201.

    CrossRef Google Scholar

    [14] J. Ma and H. Kang, Frequency-explicit convergence analysis of collocation methods for highly oscillatory Volterra integral equations with weak singularities, Applied Numerical Mathematics, 2020, 151, 1-12. DOI: 10.1016/j.apnum.2019.12.013.

    CrossRef Google Scholar

    [15] J. Ma and H. Liu, A well-conditioned Levin method for calculation of highly oscillatory integrals and its application, Journal of Computational and Applied Mathematics, 2018, 342, 451-462. DOI: 10.1016/j.cam.2018.03.044.

    CrossRef Google Scholar

    [16] J. Ma, S. Xiang and H. Kang, On the convergence rates of Filon methods for the solution of a Volterra integral equation with a highly oscillatory Bessel kernel, Applied Mathematics Letters, 2013, 26(7), 699-705. DOI: 10.1016/j.aml.2013.01.011.

    CrossRef Google Scholar

    [17] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions Hardback and CD-ROM, Cambridge University Press, 2010.

    Google Scholar

    [18] H. Teriele, Collocation methods for weakly singular second-kind Volterra integral equations with non-smooth solution, IMA Journal of Numerical Analysis, 1982, 2(4), 437-449. DOI: 10.1093/imanum/2.4.437.

    CrossRef Google Scholar

    [19] Q. Wu and W. Hou, Efficient BBFM-collocation for weakly singular oscillatory Volterra integral equations of the second kind, International Journal of Computer Mathematics, 2022, 99(5), 1022-1040. DOI: 10.1080/00207160.2021.1942460.

    CrossRef Google Scholar

    [20] S. Xiang, On van der Corput-type lemmas for Bessel and Airy transforms and applications, Journal of Computational and Applied Mathematics, 2019, 351, 179-185. DOI: 10.1016/j.cam.2018.11.007.

    CrossRef Google Scholar

    [21] S. Xiang and H. Brunner, Efficient methods for Volterra integral equations with highly oscillatory Bessel kernels, BIT Numerical Mathematics, 2013, 53(1), 241-263. DOI: 10.1007/s10543-012-0399-8.

    CrossRef Google Scholar

    [22] S. Xiang, Y. J. Cho, H. Wang and H. Brunner, Clenshaw–Curtis–Filon-type methods for highly oscillatory Bessel transforms and applications, IMA Journal of Numerical Analysis, 2011, 31(4), 1281-1314. DOI: 10.1093/imanum/drq035.

    CrossRef Google Scholar

    [23] S. Xiang, G. He and Y. J. Cho, On error bounds of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals, Advances in Computational Mathematics, 2015, 41(3), 573-597. DOI: 10.1007/s10444-014-9377-9.

    CrossRef Google Scholar

    [24] S. Xiang and K. He, On the implementation of discontinuous Galerkin methods for Volterra integral equations with highly oscillatory Bessel kernels, Applied Mathematics and Computation, 2013, 219(9), 4884-4891. DOI: 10.1016/j.amc.2012.10.073.

    CrossRef Google Scholar

    [25] Z. Xu and S. Xiang, Computation of highly oscillatory Bessel transforms with algebraic singularities, arXiv preprint arXiv: 1605.08568, 2016. DOI: 10.48550/arXiv.1605.08568.

    Google Scholar

    [26] Q. Zhang and S. Xiang, On fast multipole methods for Volterra integral equations with highly oscillatory kernels, Journal of Computational and Applied Mathematics, 2019, 348, 535-554. DOI: 10.1016/j.cam.2018.09.009.

    CrossRef Google Scholar

Figures(12)  /  Tables(8)

Article Metrics

Article views(1421) PDF downloads(313) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint