Citation: | Gaihui Guo, Feiyan Guo, Bingfang Li, Lixin Yang. THE NON-EXISTENCE AND EXISTENCE OF NON-CONSTANT POSITIVE SOLUTIONS FOR A DIFFUSIVE AUTOCATALYSIS MODEL WITH SATURATION[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3253-3293. doi: 10.11948/20230002 |
This paper deals with a diffusive autocatalysis model with saturation under Neumann boundary conditions. Firstly, some stability and Turing instability results are obtained. Then by the maximum principle, H$ \ddot{o} $lder inequality and Poincar$ \acute{e} $ inequality, a priori estimates and some basic characterizations of non-constant positive solutions are given. Moreover, some non-existence results are presented for three different situations. In particular, we find that the model does not have any non-constant positive solution when the parameter which represents the saturation rate is large enough. In addition, we use the theories of Leray-Schauder degree and bifurcation to get the existence of non-constant positive solutions, respectively. The steady-state bifurcations at both simple and double eigenvalues are intensively studied and we establish some specific condition to determine the bifurcation direction. Finally, a few of numerical simulations are provided to illustrate theoretical results.
[1] | A. Abbad, S. Abdelmalek, S. Bendoukha, et al., A generalized Degn-Harrison reaction-diffusion system: Asymptotic stability and non-existence results, Nonlinear Anal. Real World Appl., 2021, 57, 103191. doi: 10.1016/j.nonrwa.2020.103191 |
[2] | S. Abdelmalek and S. Bendoukha, On the global asymptotic stability of solutions to a generalised Lengyel-Epstein system, Nonlinear Anal. Real World Appl., 2017, 35, 397–413. doi: 10.1016/j.nonrwa.2016.11.007 |
[3] | H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 1976, 18, 620–709. doi: 10.1137/1018114 |
[4] | X. Y. Chen and W. H. Jiang, Turing-Hopf bifurcation and multi-stable spatio-temporal patterns in the Lengyel-Epstein system, Nonlinear Anal. Real World Appl., 2019, 49, 386–404. doi: 10.1016/j.nonrwa.2019.03.013 |
[5] | Y. Y. Dong, S. B. Li and S. L. Zhang, Hopf bifurcation in a reaction-diffusion model with Degn-Harrison reaction scheme, Nonlinear Anal. Real World Appl., 2017, 33, 284–297. doi: 10.1016/j.nonrwa.2016.07.002 |
[6] | Z. J. Du, X. N. Zhang and H. P. Zhu, Dynamics of nonconstant steady states of the Sel'kov model with saturation effect, J. Nonlinear Sci., 2020, 30(4), 1553–1577. doi: 10.1007/s00332-020-09617-w |
[7] | R. Engelhardt, Modeling Pattern Formation in Reaction Diffusion Systems, Denmark, Department of Chemistry Laboratory Ⅲ, H. C. Orsted Institute University of Copenhagen, 1994. |
[8] | A. B. Finlayson and J. H. Merkin, Creation of spatial structure by an electric field applied to an ionic cubic autocatalator system, J. Engrg. Math., 2000, 38, 279–296. doi: 10.1023/A:1004799200173 |
[9] | S. M. Fu, X. He, L. N. Zhang, et al., Turing patterns and spatiotemporal patterns in a tritrophic food chain model with diffusion, Nonlinear Anal. Real World Appl., 2021, 59, 103260. doi: 10.1016/j.nonrwa.2020.103260 |
[10] | X. Y. Gao, S. D. Ishag, S. M. Fu, et al., Bifurcation and Turing pattern formation in a diffusive ratio-dependent predator-prey model with predator harvesting, Nonlinear Anal. Real World Appl., 2020, 51, 102962. doi: 10.1016/j.nonrwa.2019.102962 |
[11] | G. H. Guo, B. F. Li, M. H. Wei, et al., Hopf bifurcation and steady-state bifurcation for an autocatalysis reaction-diffusion model, J. Math. Anal. Appl., 2012, 391(1), 265–277. doi: 10.1016/j.jmaa.2012.02.012 |
[12] | G. H. Guo, L. Liu, B. F. Li, et al., Qualitative analysis on positive steady-state solutions for an autocatalysis model with high order, Nonlinear Anal. Real World Appl., 2018, 41, 665–691. doi: 10.1016/j.nonrwa.2017.11.010 |
[13] | G. H. Guo, X. N. Wang, X. L. Lin, et al., Steady-state and Hopf bifurcations in the Langford ODE and PDE systems, Nonlinear Anal. Real World Appl., 2017, 34, 343–362. doi: 10.1016/j.nonrwa.2016.09.008 |
[14] | G. H. Guo, J. H. Wu and X. H. Ren, Hopf bifurcation in general Brusselator system with diffusion, Appl. Math. Mech., 2011, 32(9), 1177–1186. doi: 10.1007/s10483-011-1491-6 |
[15] | A. Hunding and R. Engelhardt, Early biological morphogenesis and nonlinear dynamics, J. Theoret. Biol., 1995, 173, 401–413. doi: 10.1006/jtbi.1995.0072 |
[16] | A. Hunding and P. G. Sorensen, Size adaptation of Turing prepatterns, J. Math. Biol., 1988, 26, 27–39. doi: 10.1007/BF00280170 |
[17] | Y. F. Jia, Y. Li and J. H. Wu, Qualitative analysis on positive steady-states for an autocatalytic reaction model in thermodynamics, Discrete Contin. Dyn. Syst., 2017, 37(9), 4785–4813. doi: 10.3934/dcds.2017206 |
[18] | S. B. Li, J. H. Wu and Y. Y. Dong, Turing patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme, J. Differential Equations, 2015, 259(5), 1990–2029. doi: 10.1016/j.jde.2015.03.017 |
[19] | S. B. Li, J. H. Wu and H. Nie, Steady-state bifurcation and Hopf bifurcation for a diffusive Leslie-Gower predator-prey model, Comput. Math. Appl., 2015, 70(12), 3043–3056. |
[20] | G. M. Lieberman, Bounds for the steady-state Sel'kov model for arbitrary p in any number of dimensions, SIAM J. Math. Anal., 2005, 36(5), 1400–1406. doi: 10.1137/S003614100343651X |
[21] | H. X. Liu, R. C. Wu and B. Liu, Coexistence of activator and inhibitor for Brusselator diffusion system in chemical or biochemical reactions, J. Nonlinear Model. Anal., 2022, 4(3), 539–561. |
[22] | Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 1996, 131(1), 79–131. doi: 10.1006/jdeq.1996.0157 |
[23] | M. J. Ma and J. J. Hu, Bifurcation and stability analysis of steady states to a Brusselator model, Appl. Math. Comput., 2014, 236, 580–592. |
[24] | D. Mansouri, S. Abdelmalek and S. Bendoukha, Bifurcations and pattern formation in a generalized Lengyel-Epstein reaction-diffusion model, Chaos Solitons Fractals, 2020, 132, 109579. doi: 10.1016/j.chaos.2019.109579 |
[25] | K. Morimoto, Construction of multi-peak solutions to the Gierer-Meinhardt system with saturation and source term, Nonlinear Anal., 2009, 71, 2532–2557. doi: 10.1016/j.na.2009.01.089 |
[26] | J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1993. |
[27] | A. K. M. Nazimuddin, M. Humayun Kabir and M. Osman Gani, Spiral patterns and numerical bifurcation analysis in a three-component Brusselator model for chemical reactions, Math. Comput. Simulation, 2023, 203, 577–591. doi: 10.1016/j.matcom.2022.07.008 |
[28] | Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 1982, 13(4), 555–593. doi: 10.1137/0513037 |
[29] | R. Peng, J. P. Shi and M. X. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law, Nonlinearity, 2008, 21(7), 1471–1488. doi: 10.1088/0951-7715/21/7/006 |
[30] | V. Petrov, S. K. Scott and K. Showalter, Excitability, Wave Reflection, and Wave Splitting in a cubic Autocatalysis Reaction-Diffusion System, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 1994. |
[31] | P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 1971, 7(3), 487–513. doi: 10.1016/0022-1236(71)90030-9 |
[32] | J. P. Shi, Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 1999, 169(2), 494–531. doi: 10.1006/jfan.1999.3483 |
[33] | Q. N. Song, R. Z Yang, C. R. Zhang, et al., Bifurcation analysis of a diffusive perdator-pery model with beddington-deangelis functional response, J. Appl. Anal. Comput., 2021, 11(2), 920–936. |
[34] | J. I. Steinfeld, J. S. Francisco and W. L. Hase, Chemical Kinetics and Dynamics, Prentice-Hall, 1999. |
[35] | I. Takagi, Point-condensation for a reaction-diffusion system, J. Differential Equations, 1986, 61(2), 208–249. doi: 10.1016/0022-0396(86)90119-1 |
[36] | P. Wang and Y. B. Gao, Turing instability of the periodic solutions for the diffusive Sel'kov model with saturation effect, Nonlinear Anal. Real World Appl., 2022, 63, 103417. doi: 10.1016/j.nonrwa.2021.103417 |
[37] | X. P. Yan, J. Y. Chen and C. H. Zhang, Dynamics analysis of a chemical reaction-diffusion model subject to Degn-Harrison reaction scheme, Nonlinear Anal. Real World Appl., 2019, 48, 161–181. doi: 10.1016/j.nonrwa.2019.01.005 |
[38] | X. Yan, Y. L. Li and G. H. Guo, Qualitative analysis on a diffusive predator-prey model with toxins, J. Math. Anal. Appl., 2020, 486(10), 123868. |
[39] | X. P. Yan and C. H. Zhang, Turing instability and formation of temporal patterns in a diffusive bimolecular model with saturation law, Nonlinear Anal. Real World Appl., 2018, 43, 54–77. doi: 10.1016/j.nonrwa.2018.02.004 |
[40] | W. B. Yang, Z. Y. Wei, H. L. Jianget, et al., The existence of steady states for a bimolecular model with autocatalysis and saturation law, Z. Angew. Math. Phys., 2018, 69(5), 131. doi: 10.1007/s00033-018-1024-8 |
[41] | F. Q. Yi, Turing instability of the periodic solutions for reaction-diffusion systems with cross-diffusion and the patch model with cross-diffusion-like coupling, J. Differential Equations, 2021, 281(25), 379–410. |
[42] | F. Q. Yi, J. X. Liu and J. J. Wei, Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model, Nonlinear Anal. Real World Appl., 2010, 11(5), 3770–3781. doi: 10.1016/j.nonrwa.2010.02.007 |
[43] | F. Q. Yi, J. J. Wei and J. P. Shi, Diffusion-driven instability and bifurcation in the Lengyel-Epstein system, Nonlinear Anal. Real World Appl., 2008, 9(3), 1038–1051. doi: 10.1016/j.nonrwa.2007.02.005 |
[44] | L. Zhang and S. Y. Liu, Stability and pattern formation in a coupled arbitrary order of autocatalysis system, Appl. Math. Model., 2009, 33(2), 884–896. doi: 10.1016/j.apm.2007.12.013 |
[45] | J. T. Zhao and Y. F. Jia, Stability analysis on steady-state bifurcation for arbitrary order autocatalytic reaction model, Appl. Math. Lett., 2019, 95, 98–103. doi: 10.1016/j.aml.2019.03.027 |
[46] | J. Zhou and J. P. Shi, Pattern formation in a genernal glycolysis reaction-diffusion system, IMA J. Appl. Math., 2015, 80(6), 1703–1738. doi: 10.1093/imamat/hxv013 |
The equilibrium
Positive periodic solution of (1.2) for
The trajectory graph (left) and phase portrait (right) of (1.2) for
The trajectory graph (left) and phase portrait (right) of (1.2) for
The equilibrium
Steady-state bifurcation solution at the simple eigenvalue of (1.3) for
Steady-state bifurcation solution at the simple eigenvalue for
Steady-state bifurcation solution at the double eigenvalue for
The neutral curves
Positive periodic solution of (1.2) for
Positive periodic solution shifts to the steady-state for