Citation: | Pradip Ramesh Patle, Moosa Gabeleh, Manuel De La Sen. ON BEST PROXIMITY POINT APPROACH TO SOLVABILITY OF A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3294-3307. doi: 10.11948/20230007 |
In this article, a class of cyclic (noncyclic) condensing operators is defined on a Banach space using the notion of measure of noncompactness and $ C $-class functions. For these newly defined condensing operators, best proximity point (pair) results are manifested. Then the obtained main results are applied to demonstrate the existence of optimum solutions of a system of fractional differential equations involving $ \psi $-Hilfer fractional derivatives.
[1] | A. H. Ansari, Note on ϕ-ψ-contractive type mappings and related fixed point, The 2nd Regional Conference on Mathematics and Application, 2014, 377–380. |
[2] | P. Angelis, R. Marchis, A. L. Martire and I. Oliva, A mean-value approach to solve fractional differential and integral equations, Chaos, Solitons and Fractals, 2020, 138, article id 109895. |
[3] | A. A. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina and B. N. Sadovski, Measure of Noncompactness and Condensing Operators, Springer, Basel AG, 1992. |
[4] | A. Ambrosetti, Un teorema di esistenza per ie equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Padova, 1967, 39, 349–361. |
[5] | J. Banas and K. Goebel, Measure of Noncompactness in Banach Spaces, Lecture notes in Pure and Appl Math, Vol 60, New York, Dekker, 1980. |
[6] | J. Banas, M. Jleli, M. Mursaleen, B. Samet and C. Vetro (Editors), Advanaces in Nonlinear Analysis via the Concept Of Measure of Noncompactness, Springer, Singapore, 2017. |
[7] | U. S. Chakraborty, Convexity and best approximation in Banach spaces, Rend. Circ. Mat. Palermo, Ⅱ, 2022, Ser 71, 247–258. |
[8] | P. Charoensawan, S. Dangskul and V. Pariwate, Common best proximity points for a pair of mappings with certain dominating property, Dem. Math., 2023, 56, 20220215. https://doi.org/10.1515/dema-2022-0215. doi: 10.1515/dema-2022-0215 |
[9] | G. Darbo, Punti uniti in transformazioni a codominio non compatto (Italian), Rend. Sem. Math. Univ. Padova, 1955, 24, 84–92. |
[10] | A. A. Eldred, W. A. Kirk and P. Veeramani, Proximal normal strucuture and relatively nonexpansive mappings, Studia. Math., 2005, 171, 283–293. doi: 10.4064/sm171-3-5 |
[11] | K. M. Furati, M. D. Kassim and N. E. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Computers and mathematics with applications, 2012, 64, 1616–1626. doi: 10.1016/j.camwa.2012.01.009 |
[12] | M. Gabeleh, A characterization of proximal normal structures via proximal diametral sequences, J. Fixed Point Theory Appl., 2017, 19, 2909–2925. doi: 10.1007/s11784-017-0460-y |
[13] | M. Gabeleh, M. Asadi and E. Karapinar, Best proximity results on condensing operators via measure of noncompactness with application to integral equations, Thai Journal of Mathematics, 2020, 18(3), 1519–1535. |
[14] | M. Gabeleh and J. Markin, Optimum solutions for a system of differential equations via measure of noncompactness, Indagationes Mathematicae, 2018. https://doi.org/10.1016/j.indag.2018.01.008. doi: 10.1016/j.indag.2018.01.008 |
[15] | M. Gabeleh, D. K. Patel and P. R. Patle, Darbo type best proximity point (pair) results using measure of noncompactness with application, Fixed Point Theory, 2022, 23(1), 247–266. doi: 10.24193/fpt-ro.2022.1.16 |
[16] | M. Gabeleh and C. Vetro, A new extension of Darbo's fixed point theorem using relatively Meir-Keeler condensing operators, Bull. Aust. Math. Soc., 2018. https://doi.org/10.1017/S000497271800045X. doi: 10.1017/S000497271800045X |
[17] | M. Gabeleh and P. R. Patle, Best Proximity Point (Pair) results via MNC in Busemann convex metric spaces, Appl. Gen. Topol., 2022, 23(2), 405–424. doi: 10.4995/agt.2022.14000 |
[18] | A. A. Kilbas, H. M. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006. |
[19] | D. Lateef, Best proximity points in $\mathcal{F}$-metric spaces with applications, Dem. Math., 2023, 56, 20220191. https://doi.org/10.1515/dema-2022-0191. doi: 10.1515/dema-2022-0191 |
[20] | H. K. Nashine, R. Arab, P. R. Patle and D. K. Patel, Best proximity point results via measure of noncompactness and application, Num. Funct. Ana. Opt., 2021. DOI: 10.1080/01630563.2021.1884570. |
[21] | P. R. Patle, M. Gabeleh and V. Rakočević, Sadovskii type best proximity point (pair) theorems with an application to fractional differential equations, Mediterr. J. Math. 2022. https://doi.org/10.1007/s00009-022-02058-7. doi: 10.1007/s00009-022-02058-7 |
[22] | P. R. Patle, M. Gabeleh and V. Rakočević, On new classes of cyclic (noncyclic) condensing operators with applications, Journal of Nonlinear and Convex Analysis, 2022, 23(7), 1335–1351. |
[23] | P. R. Patle and M. Gabeleh, On a new variant of F-contractive mappings with application to fractional differential equations, Nonlinear Analysis: Modelling and Control, 2022. https://doi.org/10.15388/namc.2022.27.27963. doi: 10.15388/namc.2022.27.27963 |
[24] | P. R. Patle, D. K. Patel and R. Arab, Darbo type best proximity point results via simulation function with application, Afrika Matematika, 2020, 31, 833–845. doi: 10.1007/s13370-020-00764-7 |
[25] | Rahul, N. Mahato, S. Panda, M. A. Alqudah and T. Abdeljawad, An existence result involving both the generalized proportional Riemann-Liouville and Hadamard fractional integral equations through generalized Darbo's fixed point theorem, AIMS Mathematics, 2022, 7(8), 15484–15496. doi: 10.3934/math.2022848 |
[26] | B. N. Sadovskii, Limit-compact and condensing operators (Russian), Uspehi Mat. Nauk, 1972, 27, 81–146. |
[27] | J. Sousa and E. Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 2018, 60, 72–91. doi: 10.1016/j.cnsns.2018.01.005 |
[28] | J. Sousa and E. Oliveira, On the Ulam–Hyers–Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator, J. Fixed Point Theory Appl., 2018, 20, 96. https://doi.org/10.1007/s11784-018-0587-5. doi: 10.1007/s11784-018-0587-5 |