∂-dressing method, lax pair, soliton solution" /> ∂-dressing method, lax pair, soliton solution" /> ∂-dressing method" /> ∂-dressing method, lax pair, soliton solution" />
Citation: | Shuxin Yang, Biao Li. $\bar{\partial}$-DRESSING METHOD FOR THREE-COMPONENT COUPLED NONLINEAR SCHRÖDINGER EQUATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2523-2533. doi: 10.11948/20220549 |
The dressing method based on $ 4\times4 $ matrix $ \bar{\partial} $-problem is extended to study the three-component coupled nonlinear Schrödinger (3DNLS) equations. The spatial and time spectral problems related to the 3DNLS equations are derived via two linear constraint equations. A 3DNLS hierarchy with source is proposed by using recursive operator. The $ N $-solitions of the 3DNLS equations are given based on the $ \bar{\partial} $-equation by selecting a spectral transformation matrix.
[1] | M. J. Ablowitz, D. Bar Yaacov and A. S. Fokas, On the inverse scattering transform for the Kadomtsev-Petviashvili equation, Stud. Appl. Math., 1983, 69, 135–142. doi: 10.1002/sapm1983692135 |
[2] | M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991. |
[3] | F. Baronio, et al., Solutions of the vector nonlinear Schrödinger equations: Evidence for deterministic rogue waves, Phys. Rev. Lett., 2012, 109(4). |
[4] | R. Beals and R. R. Coifman, The D-bar approach to inverse scattering and nonlinear evolutions, Physica D, 1986, 18, 242–249. doi: 10.1016/0167-2789(86)90184-3 |
[5] | R. Beals and R. R. Coifman, Scattering, spectral transformations and nonlinear evolution equations, Goulaouic-Meyer-Schwartz, 1981, 22. |
[6] |
L. V. Bogdanov and S. V. Manakov, The nonlocal $\bar{\partial}$-problem and (2+1)-dimensional soliton equations, J. Phys. A, 1988, 21, 537. doi: 10.1088/0305-4470/21/10/001
CrossRef $\bar{\partial}$-problem and (2+1)-dimensional soliton equations" target="_blank">Google Scholar |
[7] |
X. D. Chai and Y. F. Zhang, The $\bar{\partial}$-dressing method for the (2+1)-dimensional Konopelchenko-Dubrovsky equation, Appl. Math. Lett., 2022, 134, 108378. doi: 10.1016/j.aml.2022.108378
CrossRef $\bar{\partial}$-dressing method for the (2+1)-dimensional Konopelchenko-Dubrovsky equation" target="_blank">Google Scholar |
[8] | S. H. Chen and L. Y. Song, Rogue waves in coupled Hirota systems, Phys. Rev. E., 2013, 87, 032910. doi: 10.1103/PhysRevE.87.032910 |
[9] | E. V. Doktorov and S. B. Leble, A Dressing Method in Mathematical Physics, Springer, 2007. |
[10] |
V. G. Dubrovsky and A. V. Topovsky, Multi-lump solutions of KP equation with integrable boundary via $\bar{\partial}$-dressing method, Physica D, 2020, 414, 132740. doi: 10.1016/j.physd.2020.132740
CrossRef $\bar{\partial}$-dressing method" target="_blank">Google Scholar |
[11] |
V. G. Dubrovsky and A. V. Topovsky, Multi-soliton solutions of KP equation with integrable boundary via $\bar{\partial}$-dressing method, Physica D, 2021, 428, 133025. doi: 10.1016/j.physd.2021.133025
CrossRef $\bar{\partial}$-dressing method" target="_blank">Google Scholar |
[12] | A. S. Fokas and P. M. Santini, Dromions and a boundary value problem for the Davey-Stewartson I equation, Physica D, 1990, 44, 99–130. doi: 10.1016/0167-2789(90)90050-Y |
[13] | A. S. Fokas and V. E. Zakharov, The dressing method and nonlocal Riemann-Hilbert problem, J. Nonlinear Sci., 1992, 2, 109–134. doi: 10.1007/BF02429853 |
[14] | B. L. Guo and L. M. Ling, Rogue wave, breathers and bright-dark-rogue solutions for the coupled Schrödinger equations, Chin. Phys. Lett., 2011, 28(11), 110202. doi: 10.1088/0256-307X/28/11/110202 |
[15] | R. Hirota, Direct Methods in Soliton Theory, Springer, Berlin, 2004. |
[16] | B. G. Konopelchenko and B. T. Matkarimov, Inverse spectral transform for the nonlinear evolution equation generating the Davey-Stewartson and Ishimori equations, Stud. Appl. Math., 1990, 82, 319–359. doi: 10.1002/sapm1990824319 |
[17] |
Y. K. Kuang and J. Y. Zhu, A three-wave interaction model with self-consistent sources: The $\bar{\partial}$-dressing method and solutions, J. Math. Anal. Appl., 2015, 426, 783–793. doi: 10.1016/j.jmaa.2015.01.072
CrossRef $\bar{\partial}$-dressing method and solutions" target="_blank">Google Scholar |
[18] |
J. H. Luo and E. G. Fan, $\bar{\partial}$-dressing method for the coupled Gerdjikov-Ivanov equation, Appl. Math. Lett., 2020, 110, 106589. doi: 10.1016/j.aml.2020.106589
CrossRef $\bar{\partial}$-dressing method for the coupled Gerdjikov-Ivanov equation" target="_blank">Google Scholar |
[19] | J. H. Luo and E. G. Fan, Dbar-dressing method for the Gerdjikov-Ivanov equation with nonzero boundary conditions, Appl. Math. Lett., 2021, 120, 107297. doi: 10.1016/j.aml.2021.107297 |
[20] |
J. H. Luo and E. G. Fan, A $\bar{\partial}$-dressing approach to the Kundu-Eckhaus equation, J. Geom. Phys., 2021, 167, 104291. doi: 10.1016/j.geomphys.2021.104291
CrossRef $\bar{\partial}$-dressing approach to the Kundu-Eckhaus equation" target="_blank">Google Scholar |
[21] | W. X. Ma, Soliton solutions by means of Hirota bilinear forms, Partial Diff. Equ. Appl. Math., 2022, 5, 100220. |
[22] | S. V. Manakov, The inverse scattering transform for the time-dependent Schrödinger equation and Kadomtsev-Petviashvili equation, Physica D, 1981, 3(1–2), 420–427. |
[23] | V. B. Matveev and M. A. Salle, Darboux Transformation and Solitons, Springer, Berlin, 1991. |
[24] | P. V. Nabelek and V. E. Zakharov, Solutions to the Kaup-Broer system and its (2+1) dimensional integrable generalization via the dressing method, Physica D, 2020, 409, 132478. doi: 10.1016/j.physd.2020.132478 |
[25] | M. Vijayajayanthi, T. Kanna and M. Lakshmanan, Bright-dark solitons and their collisions in mixed N-coupled nonlinear Schrödinger equations, Phys. Rev. A., 2008, 77, 013820. doi: 10.1103/PhysRevA.77.013820 |
[26] | M. Vijayajayanthi, T. Kanna and M. Lakshmanan, Multisoliton solutions and energy sharing collisions in coupled nonlinear Schrödinger equations with focusing, defocusing and mixed type nonlinearities, Eur. Phys. J.-Spec. Top., 2009, 173, 57–80. doi: 10.1140/epjst/e2009-01067-9 |
[27] | D. S. Wang, The "good" Boussinesq equation: Long-time asymptotics, Analysis and PDE, 2023, 16(6), 1351–1388. doi: 10.2140/apde.2023.16.1351 |
[28] | D. S. Wang and X. D. Zhu, Direct and inverse scattering problems of the modified Sawada-Kotera equation: Riemann-Hilbert approach, Proc. R. Soc. A, 2022, 478, 20220541. doi: 10.1098/rspa.2022.0541 |
[29] | X. Wang and Y. Chen, Rogue-wave pair and dark-bright rogue wave solutions of the coupled Hirota equations, Chin. Phys. B., 2014, 23, 070203. doi: 10.1088/1674-1056/23/7/070203 |
[30] | X. Wang, Y. Li and Y. Chen, Generalized Darboux transformation and localized waves in coupled Hirota equations, Wave Motion, 2014, 51, 1149–1160. doi: 10.1016/j.wavemoti.2014.07.001 |
[31] | X. Wang, B. Yang, Y. Chen, et al., Higher-order localized waves in coupled nonlinear Schrödinger equations, Chin. Phys. Lett., 2014, 31(09), 090201. doi: 10.1088/0256-307X/31/9/090201 |
[32] |
Z. Y. Yan, An initial-boundary value problem of the general three-component nonlinear Schrödinger equation with a $4\times4$ lax pair on a finite interval, Chaos, 2017, 27, 053117. doi: 10.1063/1.4984025
CrossRef $4\times4$ lax pair on a finite interval" target="_blank">Google Scholar |
[33] |
S. X. Yang and B. Li, $\bar{\partial}$-dressing method for the (2+1)-dimensional Korteweg-de Vries equation, Appl. Math. Lett., 2023, 140, 108589. doi: 10.1016/j.aml.2023.108589
CrossRef $\bar{\partial}$-dressing method for the (2+1)-dimensional Korteweg-de Vries equation" target="_blank">Google Scholar |
[34] |
Y. Q. Yao, Y. H. Huang and E. G. Fan, The $\bar{\partial}$-dressing method and Cauchy matrix for the defocusing matrix NLS system, Appl. Math. Lett., 2021, 117, 107143. doi: 10.1016/j.aml.2021.107143
CrossRef $\bar{\partial}$-dressing method and Cauchy matrix for the defocusing matrix NLS system" target="_blank">Google Scholar |
[35] | V. E. Zakharov and S. V. Manakov, Construction of multidimensional nonlinear integrable systems and their solutions, Funkc. Anal. Prilozh., 1985, 19(2), 11–25. |
[36] | G. Q. Zhang and Z. Y. Yan, Three-component nonlinear Schrödinger equations: Modulational instability, Nth-order vector rational and semi-rational rogue waves, and dynamics, Commun. Nonlinear Sci., 2018, 62, 117–133. doi: 10.1016/j.cnsns.2018.02.008 |
[37] | L. Zhao and S. He, Matter wave solitons in coupled system with external potentials, Phys. Lett. A., 2011, 375, 3017–3020. doi: 10.1016/j.physleta.2011.06.034 |
[38] | L. C. Zhao and L. Jie, Rogue-wave solutions of a three-component coupled nonlinear Schrödinger equation, Phys. Rev. E., 2013, 87, 013201. doi: 10.1103/PhysRevE.87.013201 |
[39] |
J. Y. Zhu and X. G. Geng, The AB equations and the $\bar{\partial}$-dressing method in semi-characteristic coordinates, Math. Phys. Anal. Geom., 2014, 17, 49–65. doi: 10.1007/s11040-014-9140-y
CrossRef $\bar{\partial}$-dressing method in semi-characteristic coordinates" target="_blank">Google Scholar |