2024 Volume 14 Issue 5
Article Contents

Ziqiang Wang, Qing Tan, Zhongqing Wang, Junying Cao. MULTIQUADRIC QUASI-INTERPOLATION METHOD FOR FRACTIONAL INTEGRAL-DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2534-2557. doi: 10.11948/20230011
Citation: Ziqiang Wang, Qing Tan, Zhongqing Wang, Junying Cao. MULTIQUADRIC QUASI-INTERPOLATION METHOD FOR FRACTIONAL INTEGRAL-DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2534-2557. doi: 10.11948/20230011

MULTIQUADRIC QUASI-INTERPOLATION METHOD FOR FRACTIONAL INTEGRAL-DIFFERENTIAL EQUATIONS

  • Author Bio: Email: wangzq@lsec.cc.ac.cn(Z. Wang); Email: 2218244682@qq.com(Q. Tan); Email: wangzhongqing1999@126.com(Z. Wang)
  • Corresponding author: Email: caojunying@gzmu.edu.cn(J. Cao)
  • Fund Project: Z. Wang (Ziqiang Wang) was supported by National Natural Science Foundation of China (Grant No. 11961009) and Foundation of Guizhou Science and Technology Department (Grant No. QHKJC-ZK[2024]YB497).J. Cao was supported by National Natural Science Foundation of China (Grant Nos. 12361083, 62341115) and Science research fund support project of the Guizhou Minzu University (Grant No. GZMUZK[2023]CXTD05).Z. Wang (Ziqiang Wang) and J. Cao were supported by Natural Science Research Project of the Department of Education of Guizhou Province (Grant Nos. QJJ2023012, QJJ2023062, QJJ2023061)
  • In this paper, Multiquadric quasi-interpolation method is used to approximate fractional integral equations and fractional differential equations. Firstly, we construct two operators for approximating the Hadamard integral-differential equation based on quasi interpolators, and verify their properties and order of convergence. Secondly, we obtain that the approximation order of the numerical integral scheme is 3, and the approximation order of the numerical scheme is 3-μ for μ(0 < μ < 1) order fractional Hadamard derivative. Finally, the results of numerical experiments show that the numerical results are in agreement with the theoretical analysis.

    MSC: 65R20, 65D30
  • 加载中
  • [1] J. Cao and C. Xu, A high order schema for the numerical solution of the fractional ordinary differential equations, J. Comput. Phys., 2013, 238, 154–168. doi: 10.1016/j.jcp.2012.12.013

    CrossRef Google Scholar

    [2] D. Cen, C. Ou and Z. Wang, Efficient numerical algorithms of time fractional telegraph-type equations involving Hadamard derivatives, Math. Methods Appl. Sci., 2022, 45(12), 7576–7590. doi: 10.1002/mma.8263

    CrossRef Google Scholar

    [3] R. Chen and Z. Wu, Solving partial differential equation by using multiquadric quasi-interpolation, Appl. Math. Comput., 2007, 186(2), 1502–1510.

    Google Scholar

    [4] E. Fan, C. Li and Z. Li, Numerical approaches to Caputo-Hadamard fractional derivatives with applications to long-term integration of fractional differential systems, Commun. Nonlinear Sci. Numer. Simul., 2022. DOI: 10.1016/j.cnsns.2021.106096.

    CrossRef Google Scholar

    [5] S. Fazlollah and S. Zhu, Error and stability estimates of a time-fractional option pricing model under fully spatial-temporal graded meshes, J. Comput. Appl. Math., 2023. DOI: 10.1016/j.cam.2023.115075.

    CrossRef Google Scholar

    [6] R. Feng and J. Duan, High accurate finite differences based on RBF Interpolation and its application in solving differential equations, J. Sci. Comput., 2018, 76, 1785–1812. doi: 10.1007/s10915-018-0684-z

    CrossRef Google Scholar

    [7] R. Feng and F. Li, A shape-preserving quasi-interpolation operator satisfying quadratic polynomial reproduction property to scattered data, J. Comput. Appl. Math., 2009, 225(2), 594–601. doi: 10.1016/j.cam.2008.08.024

    CrossRef Google Scholar

    [8] W. Gao, J. Wang and R. Zhang, Quasi-interpolation for multivariate density estimation on bounded domain, Math. Comput. Simulation, 2023, 203, 592–608. doi: 10.1016/j.matcom.2022.07.006

    CrossRef Google Scholar

    [9] W. Gao, X. Zhang and X. Zhou, Multiquadric quasi-interpolation for integral functionals, Math. Comput. Simulation, 2020, 177, 316–328. doi: 10.1016/j.matcom.2020.04.015

    CrossRef Google Scholar

    [10] R. Ghaffari and F. Ghoreishi, Error analysis of the reduced RBF model based on POD method for time-fractional partial differential equations, Acta Appl. Math., 2020, 168(1), 33–55. doi: 10.1007/s10440-019-00278-w

    CrossRef Google Scholar

    [11] M. Hussain, S. Haq and A. Ghafoor, Meshless spectral method for solution of time-fractional coupled KdV equations, Appl. Math. Comput., 2019, 341, 321–334.

    Google Scholar

    [12] M. Jabalameli and D. Mirzaei, A weak-form RBF-generated finite difference method, Computers and Mathematics with Applications, 2020, 79(9), 2624–2643. doi: 10.1016/j.camwa.2019.11.024

    CrossRef Google Scholar

    [13] F. Jarad, T. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Difference Equ., 2012. DOI: 10.1186/1687-1847-2012-142.

    CrossRef Google Scholar

    [14] M. Li, Y. Wang and L. Ling, Numerical caputo differentiation by radial basis functions, J. Sci. Comput., 2015, 62, 300–315. doi: 10.1007/s10915-014-9857-6

    CrossRef Google Scholar

    [15] H. Liang and H. Brunner, The fine error estimation of collocation methods on uniform meshes for weakly singular volterra integral equations, J. Sci. Comput., 2020. DOI: 10.1007/s10915-020-01266-1.

    CrossRef Google Scholar

    [16] H. Liang and H. Brunner, The convergence of collocation solutions in continuous piecewise polynomial spaces for weakly singular volterra integral equations, SIAM J. Numer. Anal., 2019, 57(4), 1875–1896. doi: 10.1137/19M1245062

    CrossRef Google Scholar

    [17] J. Liu, X. Li and X. Hua, A RBF-based differential quadrature method for solving two-dimensional variable-order time fractional advection-diffusion equation, J. Comput. Phys., 2019, 384, 222–238. doi: 10.1016/j.jcp.2018.12.043

    CrossRef Google Scholar

    [18] H. Pourbashash and M. Oshagh, Local RBF-FD technique for solving the two-dimensional modified anomalous sub-diffusion equation, Appl. Math. Comput., 2018, 339, 144–152.

    Google Scholar

    [19] Y. Qiao, J. Zhao and X. Feng, A compact integrated RBF method for time fractional convection-diffusion-reaction equations, Comput. Math. Appl., 2019, 77(9), 2263–2278. doi: 10.1016/j.camwa.2018.12.017

    CrossRef Google Scholar

    [20] N. Sharon, R. Cohen and H. Wendland, On multiscale quasi-interpolation of scattered scalar-and manifold-valued functions, SIAM J. Sci. Comput., 2023, 45, A2458–A2482. doi: 10.1137/22M1528306

    CrossRef Google Scholar

    [21] F. Soleymani and S. Zhu, RBF-FD solution for a financial partial-integro differential equation utilizing the generalized multiquadric function, Comput. Math. Appl., 2021, 82, 161–178. doi: 10.1016/j.camwa.2020.11.010

    CrossRef Google Scholar

    [22] Z. Sun and Y. Gao, High order multiquadric trigonometric quasi-interpolation method for solving time-dependent partial differential equations, Numer. Algorithms, 2023, 93(4), 1719–1739. doi: 10.1007/s11075-022-01486-6

    CrossRef Google Scholar

    [23] V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Berlin: Springer, 2013.

    Google Scholar

    [24] Z. Wang and J. Cao, Multiquadric quasi-interpolation method for fractional diffusion equations in space (in Chinese), J. Xiamen Univ., 2015, 54(3), 358–363.

    Google Scholar

    [25] Q. Xu and Z. Zheng, Spectral collocation method for fractional differential/integral equations with generalized fractional operator, Int. J. Differ. Equ. Appl., 2019. DOI: 10.1155/2019/3734617.

    CrossRef Google Scholar

    [26] F. Zafarghandi and M. Mohammadi, Numerical approximations for the riesz space fractional advection-dispersion equations via radial basis functions, Appl. Numer. Math., 2019, 144, 59–82. doi: 10.1016/j.apnum.2019.05.011

    CrossRef Google Scholar

    [27] F. Zafarghandi, M. Mohammadi and E. Babolian, Radial basis functions method for solving the fractional diffusion equations, Appl. Math. Comput., 2019, 342, 224–246.

    Google Scholar

Figures(2)  /  Tables(6)

Article Metrics

Article views(1108) PDF downloads(380) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint