Citation: | Yiquan Li, Chuanxi Zhu, Yingying Xiao. SOME COMMON FIXED-POINT RESULTS IN GENERALIZED $\mathcal{F}$-METRIC SPACES[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2558-2571. doi: 10.11948/20230032 |
In this paper, we establish a new common fixed-point theorem for multivalued mappings with the greatest lower bound property in generalized $\mathcal{F}$-metric spaces. Also, we propose some new theorems via more general contractions.
[1] | H. Afshari, M. Atapour and E. Karapınar, A discussion on a generalized geraghty multi-valued mappings and applications, Adv. Difference Equ., 2020, 2020(356), 14 pp. |
[2] |
J. Ahmad, A. S. Al-Rawashdeh and A. E. Al-Mazrooei, Fixed point results for $(\alpha, \perp_{\mathcal{F}})$-contractions in orthogonal $\mathcal{F}$-metric spaces with applications, J. Funct. Space., 2022. DOI: 10.1155/2022/8532797.
CrossRef $(\alpha, \perp_{\mathcal{F}})$-contractions in orthogonal |
[3] | J. Ahmad, C. Klin-Eam and A. Azam1, Common fixed points for multivalued mappings in complex valued metric spaces with applications, Abstr. Appl. Anal., 2013, Art ID 854965, 12 pp. |
[4] | A. E. Al-Mazrooei and J. Ahmad, Fixed point theorems for rational contractions in $\mathcal{F}$-metric spaces, J. Math. Anal., 2019, 10, 79–86. |
[5] |
S. A. Al-Mezel, J. Ahmad and G. Marino, Fixed point theorems for generalized ($\alpha\beta-\psi$)-contractions in $\mathcal{F}$-metric spaces with applications, Mathematics-Basel., 2020, 8, 584. DOI: 10.3390/math8040584.
CrossRef $\mathcal{F}$-metric spaces with applications" target="_blank">Google Scholar |
[6] | P. Amiri and H. Afshari, Common fixed point results for multi-valued mappings in complex-valued double controlled metric spaces and their applications to the existence of solution of fractional integral inclusion systems, Chaos. Soliton. Fract., 2022, 154, 15 pp. |
[7] |
H. Aydi, E. Karapınar, Z. D. Mitrović and T. Rashid, A remark on "Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results $\mathcal{F}$-metric spaces", RACSAM., 2019, 113(4), 3197–3206. doi: 10.1007/s13398-019-00690-9
CrossRef |
[8] | S. Czerwik, Nonlinear set-valued contraction mappings in $b$-metric spaces, Atti Semin. Mat. Fis. Univ. Modena., 1998, 46, 263–276. |
[9] | O. Ege, C. Park and A. H. Ansari, A different approach to complex valued $G_b$-metric spaces, Adv. Differ. Equ., 2020, 2020(152), 13 pp. |
[10] |
Y. F. Fan, C. X. Zhu and Z. Q. Wu, Some $\varphi$-coupled fixed point results via modified F-control function's concept in metric spaces and its applications, J. Comput. Appl. Math., 2019, 349, 70–81. doi: 10.1016/j.cam.2018.09.013
CrossRef $\varphi$-coupled fixed point results via modified F-control function's concept in metric spaces and its applications" target="_blank">Google Scholar |
[11] | M. Jleli and B. Samet, On a new generalization of metric spaces, J. Fix Point Theory A, 2018. DOI: 10.1007/s11784-018-0606-6. |
[12] | H. Lakzian and B. E. Rhoades, Some fixed point theorems using weaker Meir-Keeler function in metric spaces with $w$-distance, Appl. Math. Comput., 2019, 342, 18–25. |
[13] |
Y. Q. Li, C. X. Zhu, Y. Y. Xiao and L. Zhou, A note on three different contractions in partially ordered complex valued $G_b$-metric spaces, AIMS. Math., 2022, 7, 12322–12341. doi: 10.3934/math.2022684
CrossRef $G_b$-metric spaces" target="_blank">Google Scholar |
[14] |
M. Liang, C. X. Zhu, C. F. Chen and Z. Q. Wu, Some new theorems for cyclic contractions in $G_b$-metric spaces and some applications, Appl. Math. Comput., 2019, 346, 545–558.
$G_b$-metric spaces and some applications" target="_blank">Google Scholar |
[15] |
Z. D. Mitrović, H. Aydi, N. Hussain and A. Mukheimer, Reich, Jungck, and Berinde common fixed point results on $\mathcal{F}$-metric spaces and an application, Mathematics-Basel., 2019, 7(5), 387.
$\mathcal{F}$-metric spaces and an application" target="_blank">Google Scholar |
[16] |
Z. Mustafa, R. J. Shahkoohi, V. Parvaneh, Z. Kadelburg and M. M. M. Jaradat, Ordered $S_p$-metric spaces and some fixed point theorems for contractive mappings with application to periodic boundary value problems, Fixed Point Theory A, 2019, 2019, 16. doi: 10.1186/s13663-019-0666-3
CrossRef $S_p$-metric spaces and some fixed point theorems for contractive mappings with application to periodic boundary value problems" target="_blank">Google Scholar |
[17] | S. K. Panda, T. Abdeljawad and C. Ravichandran, A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear telegraph equation via fixed point method, Chaos. Soliton. Fract., 2020, 130, 11 pp. |
[18] | T. Senapati, L. K. Dey, A. Chanda and H. P. Huang, Some non-unique fixed point or periodic point results in JS-metric spaces, J. Fix Point Theory Appl., 2019, 21(51), 15 pp. |
[19] | A. Shoaib, Z. Nisar, A. Hussain, O. Ozer and M. Arshad, Modified Banach fixed point results for locally contractive mappings in complete $G_d$-metric like space, Electr. J. Math. Anal. Appl., 2018, 6, 144–155. |
[20] | C. X. Zhu, J. Chen, J. H. Chen, C. F. Chen and H. P. Huang, A new generalization of $\mathcal{F}$-metric spaces and some fixed point theorems and an application, J. Appl. Anal. Comput., 2021, 11, 2649–2663. |