Citation: | Aissa Guesmia. ON THE WELL-POSEDNESS AND STABILITY FOR CARBON NANOTUBES AS COUPLED TWO TIMOSHENKO BEAMS WITH FRICTIONAL DAMPINGS[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2572-2621. doi: 10.11948/20230065 |
The objective of this paper is to study the well-posedness and stability questions for double wall carbon nanotubes modeled as linear one-dimensional coupled two Timoshenko beams in a bounded domain under frictional dampings. First, we prove the well-posedness of our system by applying the semigroups theory of linear operators. Second, we show several strong, non-exponential, exponential, polynomial and non-polynomial stability results depending on the number of frictional dampings, their position and some connections between the coefficients. In some cases, the optimality of the polynomial decay rate is also proved. The proofs of these stability results are based on a combination of the energy method and the frequency domain approach.
[1] | A. Afilal, A. Guesmia and A. Soufyane, New stability results for a linear thermoelastic Bresse system with second sound, Appl. Math. Optim., 2021, 83, 699–738. doi: 10.1007/s00245-019-09560-7 |
[2] | A. Afilal, A. Guesmia, A. Soufyane and M. Zahir, On the exponential and polynomial stability for a linear Bresse system, Math. Meth. Appl. Scie., 2020, 43, 2615–2625. doi: 10.1002/mma.6069 |
[3] | D. S. Almeida Junior and A. J. A. Ramos, On the nature of dissipative Timoshenko systems at light of the second spectrum of frequency, Z. Angew. Math. Phys., 2017, 68, 31 pp. doi: 10.1007/s00033-017-0777-9 |
[4] | D. S. Almeida Junior, M. L. Santos and J. E. Munoz Rivera, Stability to weakly dissipative Timoshenko systems, Math. Meth. Appl. Scie., 2013, 36, 1965–1976. doi: 10.1002/mma.2741 |
[5] | D. S. Almeida Junior, M. L. Santos and J. E. Munoz Rivera, Stability to 1-D thermoelastic Timoshenko beam acting on shear force, Z. Angew. Math. Phys., 2014, 65, 1233–1249. doi: 10.1007/s00033-013-0387-0 |
[6] | W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one one-parameter semigroups, Trans. Amer. Math. Soc., 1988, 306, 837–852. doi: 10.1090/S0002-9947-1988-0933321-3 |
[7] | W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Birkhäuser, Basel, 2011. |
[8] | M. Astudillo and H. P. Oquendo, Stability results for a Timoshenko system with a fractional operator in the memory, Appl. Math. Optim., 2021, 83, 1247–1275. doi: 10.1007/s00245-019-09587-w |
[9] | C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 2008, 8, 765–780. doi: 10.1007/s00028-008-0424-1 |
[10] | A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Anna., 2010, 347, 455–478. doi: 10.1007/s00208-009-0439-0 |
[11] | H. Dai, Carbon nanotubes: Synthesis, integration, and properties, Accounts of Chemical Research, 2002, 35, 1035–1044. doi: 10.1021/ar0101640 |
[12] | F. Dell Oro, On the stability of Bresse and Timoshenko systems with hyperbolic heat conduction, J. Diff. Equa., 2021, 281, 148–198. doi: 10.1016/j.jde.2021.02.009 |
[13] | F. Dell Oro and V. Pata, On the stability of Timoshenko systems with Gurtin-Pipkin thermal law, J. Diff. Equa., 2014, 257, 523–548. doi: 10.1016/j.jde.2014.04.009 |
[14] | H. D. Fernandez Sare and R. Racke, On the stability of damped Timoshenko system: Cattaneo versus Fourier law, Arch. Rat. Mech. Anal., 2009, 194, 221–251. doi: 10.1007/s00205-009-0220-2 |
[15] | A. Guesmia, Well-posedness and stability results for laminated Timoshenko beams with interfacial slip and infinite memory, IMA J. Math. Cont. Info., 2020, 37, 300–350. |
[16] | A. Guesmia, The effect of the heat conduction of types Ⅰ and Ⅲ on the decay rate of the Bresse system via the vertical displacement, Applicable Analysis, 2022, 101, 2446–2471. doi: 10.1080/00036811.2020.1811974 |
[17] | A. Guesmia and M. Kirane, Uniform and weak stability of Bresse system with two infinite memories, ZAMP, 2016, 67, 1–39. |
[18] | A. Guesmia and S. Messaoudi, General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping, Math. Meth. Appl. Scie., 2009, 32, 2102–2122. doi: 10.1002/mma.1125 |
[19] | A. Guesmia and S. Messaoudi, Some stability results for Timoshenko systems with cooperative frictional and infinite memory dampings in the displacement, Acta. Math. Scie., 2016, 36, 1–33. doi: 10.1016/S0252-9602(15)30075-8 |
[20] | A. Guesmia, S. Messaoudi and A. Soufyane, On the stabilization for a linear Timoshenko system with infinite history and applications to the coupled Timoshenko-heat systems, Elec. J. Diff. Equa., 2012, 2012, 1–45. doi: 10.1186/1687-1847-2012-1 |
[21] | A. Guesmia, Z. Mohamad-Ali, A. Wehbe and W. Youssef, Polynomial stability of a transmission problem involving Timoshenko systems with fractional Kelvin-Voigt damping, Math. Meth. Appl. Scie., 2023, 46, 7140–7176. doi: 10.1002/mma.8960 |
[22] | F. L. Huang, Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Diff. Equa., 1985, 1, 43–56. |
[23] | S. Iijima, Helical microtubules of graphitic carbon, Nature, 35, 1991, 56–58. |
[24] | A. Keddi, T. Apalara and S. Messaoudi, Exponential and polynomial decay in a thermoelastic-Bresse system with second sound, Appl. Math. Optim., 2018, 77, 315–341. doi: 10.1007/s00245-016-9376-y |
[25] | Z. Liu and B. Rao, Characterization of polymomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 2005, 56, 630–644. doi: 10.1007/s00033-004-3073-4 |
[26] | Z. Liu, B. Rao and Q. Zheng, Polynomial stability of the Rao-Nakra beam with a single internal viscous damping, J. Diff. Equa., 2020, 269, 6125–6162. doi: 10.1016/j.jde.2020.04.030 |
[27] | Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, 398 Research Notes in Mathematics, Chapman & Hall CRC, 1999. |
[28] | S. A. Messaoudi and A. Fareh, Energy decay in a Timoshenko-type system of thermoelasticity of type Ⅲ with different wave-propagation speeds, Arab J. Math., 2013, 2, 199–207. doi: 10.1007/s40065-012-0061-y |
[29] | S. A. Messaoudi, M. Pokojovy and B. Said-Houari, Nonlinear Damped Timoshenko systems with second: Global existence and exponential stability, Math. Method. Appl. Sci., 2009, 32, 505–534. doi: 10.1002/mma.1049 |
[30] | J. E. Munoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems - Global existence and exponential stability, J. Math. Anal. Appl., 2002, 276, 248–278. doi: 10.1016/S0022-247X(02)00436-5 |
[31] | J. E. Munoz Rivera and R. Racke, Global stability for damped Timoshenko systems, Disc. Cont. Dyna. Syst., 2003, 9, 1625–1639. doi: 10.3934/dcds.2003.9.1625 |
[32] | H. P. Oquendo, C. R. da Luz, Asymptotic behavior for Timoshenko systems with fractional damping, Asymptot. Anal., 2020, 118, 123–142. |
[33] | A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. |
[34] | J. Prüss, On the spectrum of $C_0$ semigroups, Trans. Amer. Math. Soc., 1984, 284, 847–857. |
[35] | C. A. Raposo, J. Ferreira, M. L. Santos and M. N. O. Castro, Exponential stability for the Timoshenko system with two week dampings, Appl. Math. Lett., 2005, 18, 535–541. doi: 10.1016/j.aml.2004.03.017 |
[36] | C. A. Raposo, O. P. Vera Villagran, J. Ferreira and E. Piskin, Rao-Nakra sandwich beam with second sound, Part. Diff. Equa. Appl. Math., 2021, 4, 1–5. |
[37] | R. S. Ruoff and D. C. Lorents, Mechanical and thermal properties of carbon nanotubes, Carbon, 1995, 33, 925–930. doi: 10.1016/0008-6223(95)00021-5 |
[38] | M. L. Santos, D. S. Almeida Junior and J. E. Munoz Rivera, The stability number of the Timoshenko system with second sound, J. Diff. Equa., 2012, 253, 2715–2733. doi: 10.1016/j.jde.2012.07.012 |
[39] | C. Shen, A. H. Brozena and Y. Wang, Double-walled carbon nanotubes: Challenges and opportunities, Nanoscale, 2011, 3, 503–518. doi: 10.1039/C0NR00620C |
[40] | A. Soufyane and A. Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping, Elec. J. Diff. Equa., 2003, 29, 1–14. |
[41] | S. J. Tans, A. R. M. Verschueren and C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature, 1998, 393, 49–52. doi: 10.1038/29954 |
[42] | S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine, 1921, 41, 744–746. |
[43] | Q. Wang, G. Zhou and K. Lin, Scale effect on wave propagation of double-walled carbon nanotubes, Inte. J. Solids and Structures, 2006, 43, 6071–6084. doi: 10.1016/j.ijsolstr.2005.11.005 |
[44] | J. Yoon, Vibration of an embedded multiwall carbon nanotube, Composites Science and Technology, 2003, 63, 1533–1542. doi: 10.1016/S0266-3538(03)00058-7 |
[45] | J. Yoon, C. Q. Ru and A. Mioduchowski, Noncoaxial resonance of an isolated multiwall carbon nanotube, Physical Review B, 2002, 66. |
[46] | J. Yoon, C. Q. Ru and A. Mioduchowski, Sound wave propagation in multiwall carbon nanotubes, J. Appl. Phys., 2003, 93, 4801–4806. doi: 10.1063/1.1559932 |
[47] | J. Yoon, C. Q. Ru and A. Mioduchowski, Timoshenko-beam effects on transverse wave propagation in carbon nanotubes, Composites Part B: Engineering, 2004, 35, 87–93. doi: 10.1016/j.compositesb.2003.09.002 |
[48] | Y. Y. Zhang, C. M. Wang and V. B. C. Tan, Buckling of multiwalled carbon nanotubes using timoshenko beam theory, J. Engineering Mechanics, 2006, 132, 952–958. |