2024 Volume 14 Issue 5
Article Contents

Aissa Guesmia. ON THE WELL-POSEDNESS AND STABILITY FOR CARBON NANOTUBES AS COUPLED TWO TIMOSHENKO BEAMS WITH FRICTIONAL DAMPINGS[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2572-2621. doi: 10.11948/20230065
Citation: Aissa Guesmia. ON THE WELL-POSEDNESS AND STABILITY FOR CARBON NANOTUBES AS COUPLED TWO TIMOSHENKO BEAMS WITH FRICTIONAL DAMPINGS[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2572-2621. doi: 10.11948/20230065

ON THE WELL-POSEDNESS AND STABILITY FOR CARBON NANOTUBES AS COUPLED TWO TIMOSHENKO BEAMS WITH FRICTIONAL DAMPINGS

  • The objective of this paper is to study the well-posedness and stability questions for double wall carbon nanotubes modeled as linear one-dimensional coupled two Timoshenko beams in a bounded domain under frictional dampings. First, we prove the well-posedness of our system by applying the semigroups theory of linear operators. Second, we show several strong, non-exponential, exponential, polynomial and non-polynomial stability results depending on the number of frictional dampings, their position and some connections between the coefficients. In some cases, the optimality of the polynomial decay rate is also proved. The proofs of these stability results are based on a combination of the energy method and the frequency domain approach.

    MSC: 35B40, 35L45, 74H40, 93D20, 93D15
  • 加载中
  • [1] A. Afilal, A. Guesmia and A. Soufyane, New stability results for a linear thermoelastic Bresse system with second sound, Appl. Math. Optim., 2021, 83, 699–738. doi: 10.1007/s00245-019-09560-7

    CrossRef Google Scholar

    [2] A. Afilal, A. Guesmia, A. Soufyane and M. Zahir, On the exponential and polynomial stability for a linear Bresse system, Math. Meth. Appl. Scie., 2020, 43, 2615–2625. doi: 10.1002/mma.6069

    CrossRef Google Scholar

    [3] D. S. Almeida Junior and A. J. A. Ramos, On the nature of dissipative Timoshenko systems at light of the second spectrum of frequency, Z. Angew. Math. Phys., 2017, 68, 31 pp. doi: 10.1007/s00033-017-0777-9

    CrossRef Google Scholar

    [4] D. S. Almeida Junior, M. L. Santos and J. E. Munoz Rivera, Stability to weakly dissipative Timoshenko systems, Math. Meth. Appl. Scie., 2013, 36, 1965–1976. doi: 10.1002/mma.2741

    CrossRef Google Scholar

    [5] D. S. Almeida Junior, M. L. Santos and J. E. Munoz Rivera, Stability to 1-D thermoelastic Timoshenko beam acting on shear force, Z. Angew. Math. Phys., 2014, 65, 1233–1249. doi: 10.1007/s00033-013-0387-0

    CrossRef Google Scholar

    [6] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one one-parameter semigroups, Trans. Amer. Math. Soc., 1988, 306, 837–852. doi: 10.1090/S0002-9947-1988-0933321-3

    CrossRef Google Scholar

    [7] W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Birkhäuser, Basel, 2011.

    Google Scholar

    [8] M. Astudillo and H. P. Oquendo, Stability results for a Timoshenko system with a fractional operator in the memory, Appl. Math. Optim., 2021, 83, 1247–1275. doi: 10.1007/s00245-019-09587-w

    CrossRef Google Scholar

    [9] C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 2008, 8, 765–780. doi: 10.1007/s00028-008-0424-1

    CrossRef Google Scholar

    [10] A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Anna., 2010, 347, 455–478. doi: 10.1007/s00208-009-0439-0

    CrossRef Google Scholar

    [11] H. Dai, Carbon nanotubes: Synthesis, integration, and properties, Accounts of Chemical Research, 2002, 35, 1035–1044. doi: 10.1021/ar0101640

    CrossRef Google Scholar

    [12] F. Dell Oro, On the stability of Bresse and Timoshenko systems with hyperbolic heat conduction, J. Diff. Equa., 2021, 281, 148–198. doi: 10.1016/j.jde.2021.02.009

    CrossRef Google Scholar

    [13] F. Dell Oro and V. Pata, On the stability of Timoshenko systems with Gurtin-Pipkin thermal law, J. Diff. Equa., 2014, 257, 523–548. doi: 10.1016/j.jde.2014.04.009

    CrossRef Google Scholar

    [14] H. D. Fernandez Sare and R. Racke, On the stability of damped Timoshenko system: Cattaneo versus Fourier law, Arch. Rat. Mech. Anal., 2009, 194, 221–251. doi: 10.1007/s00205-009-0220-2

    CrossRef Google Scholar

    [15] A. Guesmia, Well-posedness and stability results for laminated Timoshenko beams with interfacial slip and infinite memory, IMA J. Math. Cont. Info., 2020, 37, 300–350.

    Google Scholar

    [16] A. Guesmia, The effect of the heat conduction of types Ⅰ and Ⅲ on the decay rate of the Bresse system via the vertical displacement, Applicable Analysis, 2022, 101, 2446–2471. doi: 10.1080/00036811.2020.1811974

    CrossRef Google Scholar

    [17] A. Guesmia and M. Kirane, Uniform and weak stability of Bresse system with two infinite memories, ZAMP, 2016, 67, 1–39.

    Google Scholar

    [18] A. Guesmia and S. Messaoudi, General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping, Math. Meth. Appl. Scie., 2009, 32, 2102–2122. doi: 10.1002/mma.1125

    CrossRef Google Scholar

    [19] A. Guesmia and S. Messaoudi, Some stability results for Timoshenko systems with cooperative frictional and infinite memory dampings in the displacement, Acta. Math. Scie., 2016, 36, 1–33. doi: 10.1016/S0252-9602(15)30075-8

    CrossRef Google Scholar

    [20] A. Guesmia, S. Messaoudi and A. Soufyane, On the stabilization for a linear Timoshenko system with infinite history and applications to the coupled Timoshenko-heat systems, Elec. J. Diff. Equa., 2012, 2012, 1–45. doi: 10.1186/1687-1847-2012-1

    CrossRef Google Scholar

    [21] A. Guesmia, Z. Mohamad-Ali, A. Wehbe and W. Youssef, Polynomial stability of a transmission problem involving Timoshenko systems with fractional Kelvin-Voigt damping, Math. Meth. Appl. Scie., 2023, 46, 7140–7176. doi: 10.1002/mma.8960

    CrossRef Google Scholar

    [22] F. L. Huang, Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Diff. Equa., 1985, 1, 43–56.

    Google Scholar

    [23] S. Iijima, Helical microtubules of graphitic carbon, Nature, 35, 1991, 56–58.

    Google Scholar

    [24] A. Keddi, T. Apalara and S. Messaoudi, Exponential and polynomial decay in a thermoelastic-Bresse system with second sound, Appl. Math. Optim., 2018, 77, 315–341. doi: 10.1007/s00245-016-9376-y

    CrossRef Google Scholar

    [25] Z. Liu and B. Rao, Characterization of polymomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 2005, 56, 630–644. doi: 10.1007/s00033-004-3073-4

    CrossRef Google Scholar

    [26] Z. Liu, B. Rao and Q. Zheng, Polynomial stability of the Rao-Nakra beam with a single internal viscous damping, J. Diff. Equa., 2020, 269, 6125–6162. doi: 10.1016/j.jde.2020.04.030

    CrossRef Google Scholar

    [27] Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, 398 Research Notes in Mathematics, Chapman & Hall CRC, 1999.

    Google Scholar

    [28] S. A. Messaoudi and A. Fareh, Energy decay in a Timoshenko-type system of thermoelasticity of type Ⅲ with different wave-propagation speeds, Arab J. Math., 2013, 2, 199–207. doi: 10.1007/s40065-012-0061-y

    CrossRef Google Scholar

    [29] S. A. Messaoudi, M. Pokojovy and B. Said-Houari, Nonlinear Damped Timoshenko systems with second: Global existence and exponential stability, Math. Method. Appl. Sci., 2009, 32, 505–534. doi: 10.1002/mma.1049

    CrossRef Google Scholar

    [30] J. E. Munoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems - Global existence and exponential stability, J. Math. Anal. Appl., 2002, 276, 248–278. doi: 10.1016/S0022-247X(02)00436-5

    CrossRef Google Scholar

    [31] J. E. Munoz Rivera and R. Racke, Global stability for damped Timoshenko systems, Disc. Cont. Dyna. Syst., 2003, 9, 1625–1639. doi: 10.3934/dcds.2003.9.1625

    CrossRef Google Scholar

    [32] H. P. Oquendo, C. R. da Luz, Asymptotic behavior for Timoshenko systems with fractional damping, Asymptot. Anal., 2020, 118, 123–142.

    Google Scholar

    [33] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.

    Google Scholar

    [34] J. Prüss, On the spectrum of $C_0$ semigroups, Trans. Amer. Math. Soc., 1984, 284, 847–857.

    $C_0$ semigroups" target="_blank">Google Scholar

    [35] C. A. Raposo, J. Ferreira, M. L. Santos and M. N. O. Castro, Exponential stability for the Timoshenko system with two week dampings, Appl. Math. Lett., 2005, 18, 535–541. doi: 10.1016/j.aml.2004.03.017

    CrossRef Google Scholar

    [36] C. A. Raposo, O. P. Vera Villagran, J. Ferreira and E. Piskin, Rao-Nakra sandwich beam with second sound, Part. Diff. Equa. Appl. Math., 2021, 4, 1–5.

    Google Scholar

    [37] R. S. Ruoff and D. C. Lorents, Mechanical and thermal properties of carbon nanotubes, Carbon, 1995, 33, 925–930. doi: 10.1016/0008-6223(95)00021-5

    CrossRef Google Scholar

    [38] M. L. Santos, D. S. Almeida Junior and J. E. Munoz Rivera, The stability number of the Timoshenko system with second sound, J. Diff. Equa., 2012, 253, 2715–2733. doi: 10.1016/j.jde.2012.07.012

    CrossRef Google Scholar

    [39] C. Shen, A. H. Brozena and Y. Wang, Double-walled carbon nanotubes: Challenges and opportunities, Nanoscale, 2011, 3, 503–518. doi: 10.1039/C0NR00620C

    CrossRef Google Scholar

    [40] A. Soufyane and A. Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping, Elec. J. Diff. Equa., 2003, 29, 1–14.

    Google Scholar

    [41] S. J. Tans, A. R. M. Verschueren and C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature, 1998, 393, 49–52. doi: 10.1038/29954

    CrossRef Google Scholar

    [42] S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine, 1921, 41, 744–746.

    Google Scholar

    [43] Q. Wang, G. Zhou and K. Lin, Scale effect on wave propagation of double-walled carbon nanotubes, Inte. J. Solids and Structures, 2006, 43, 6071–6084. doi: 10.1016/j.ijsolstr.2005.11.005

    CrossRef Google Scholar

    [44] J. Yoon, Vibration of an embedded multiwall carbon nanotube, Composites Science and Technology, 2003, 63, 1533–1542. doi: 10.1016/S0266-3538(03)00058-7

    CrossRef Google Scholar

    [45] J. Yoon, C. Q. Ru and A. Mioduchowski, Noncoaxial resonance of an isolated multiwall carbon nanotube, Physical Review B, 2002, 66.

    Google Scholar

    [46] J. Yoon, C. Q. Ru and A. Mioduchowski, Sound wave propagation in multiwall carbon nanotubes, J. Appl. Phys., 2003, 93, 4801–4806. doi: 10.1063/1.1559932

    CrossRef Google Scholar

    [47] J. Yoon, C. Q. Ru and A. Mioduchowski, Timoshenko-beam effects on transverse wave propagation in carbon nanotubes, Composites Part B: Engineering, 2004, 35, 87–93. doi: 10.1016/j.compositesb.2003.09.002

    CrossRef Google Scholar

    [48] Y. Y. Zhang, C. M. Wang and V. B. C. Tan, Buckling of multiwalled carbon nanotubes using timoshenko beam theory, J. Engineering Mechanics, 2006, 132, 952–958.

    Google Scholar

Article Metrics

Article views(956) PDF downloads(332) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint