Citation: | Yonghong Ding, Jing Niu. SOLVABILITY AND OPTIMAL CONTROLS OF FRACTIONAL IMPULSIVE STOCHASTIC EVOLUTION EQUATIONS WITH NONLOCAL CONDITIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2622-2642. doi: 10.11948/20230238 |
This paper deals with the solvability and optimal controls of a class of impulsive fractional stochastic evolution equations with nonlocal initial conditions in a Hilbert space. Firstly, the existence and uniqueness of mild solutions for the considered system are investigated. Then, we derive the existence conditions of optimal pairs to the control systems. In the end, an example is presented to illustrate the effectiveness of our abstract results.
[1] | D. Bainov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Longman Scientific and Technical Group, New York, 1993. |
[2] | P. Balasubramaniam and P. Tamilalagan, The solvability and optimal controls for impulsive fractional stochastic integro-differential equations via resolvent operators, J. Optim. Theory Appl., 2017, 174, 139-155. doi: 10.1007/s10957-016-0865-6 |
[3] | E. Balder, Necessary and sufficient conditions for L1-strong-weak lower semicontinuity of integral functional, Nonlinear Anal., 1987, 11, 1399-1404. doi: 10.1016/0362-546X(87)90092-7 |
[4] | M. Benchohra, J. Henderson and S. Ntouyas, Impulsive Differential Equations and Inclusions, in: Contemporary Mathematics and its Applications, Hindawi Publ, Corp, 2006. |
[5] | L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of solutions of a nonlocal Cauchy problem in a Banach space, Appl. Anal., 1991, 40, 11-19. doi: 10.1080/00036819008839989 |
[6] | Y. K. Chang, Y. T. Pei and R. Ponce, Existence and optimal controls for fractional stochastic evolution equations of Sobolev type via fractional resolvent operators, J. Optim. Theory Appl., 2019, 182, 558-572. doi: 10.1007/s10957-018-1314-5 |
[7] | R. Chaudhary, Partial approximate controllability results for fractional order stochastic evolution equations using approximation method, Evol. Equ. Control Theory, 2023, 12, 1083-1101. doi: 10.3934/eect.2023001 |
[8] | P. Y. Chen, Y. X. Li and X. P. Zhang, On the initial value problem of fractional stochastic evolution equations in Hilbert spaces, Commun. Pure Appl. Anal., 2015, 14, 1817-1840. doi: 10.3934/cpaa.2015.14.1817 |
[9] | P. Y. Chen, X. P. Zhang and Y. X. Li, Nonlocal problem for fractional stochastic evolution equations with solution operators, Fract. Calc. Appl. Anal., 2016, 19, 1507-1526. doi: 10.1515/fca-2016-0078 |
[10] | P. Chen, X. Zhang and Y. Li, Study on fractional non-autonomous evolution equations with delay, Comput. Math. Appl., 2017, 73, 794-803. doi: 10.1016/j.camwa.2017.01.009 |
[11] | G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. |
[12] | K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., 1993, 179, 630-637. doi: 10.1006/jmaa.1993.1373 |
[13] | R. Dhayal, M. Malik and S. Abbas, Solvability and optimal controls of non-instantaneous impulsive stochastic fractional differential equation of order $q\in(1, 2)$, Stochastics, 2021, 780-802. |
[14] | R. Dhayal, M. Malik and S. Abbas, Approximate and trajectory controllability of fractional stochastic differential equation with non-instantaneous impulses and poisson jumps, Asian J. Control, 2021, 2669-2680. |
[15] | R. Dhayal, M. Malik, S. Abbas, A. Kumar and R. Sakthivel, Approximation theorems for controllability problem governed by fractional differential equation, Evol. Equat. Control Theory, 2021, 411-429. |
[16] | R. Dhayal, M. Malik and Q. X. Zhu, Optimal controls of impulsive fractional stochastic differential systems driven by rosenblatt process with state-dependent delay, Asian J. Control, 2023. DOI: org/10.1002/asjc.3193. |
[17] | Y. H. Ding and Y. X. Li, Approximate controllability of fractional stochastic evolution equations with nonlocal conditions, Int. J. Nonlinear Sci. Numer. Simul., 2020, 21, 829-841. doi: 10.1515/ijnsns-2019-0229 |
[18] |
Y. H. Ding and Y. X. Li, Finite-approximate controllability of impulsive $\psi$-Caputo fractional evolution equations with nonlocal conditions, Fract. Calc. Appl. Anal., 2023, 26, 1326-1358. doi: 10.1007/s13540-023-00164-1
CrossRef $\psi$-Caputo fractional evolution equations with nonlocal conditions" target="_blank">Google Scholar |
[19] | S. Farahi and T. Guendouzi, Approximate controllability of fractional neutral stochastic evolution equations with nonlocal conditions, Results Math., 2014, 65, 501-521. doi: 10.1007/s00025-013-0362-2 |
[20] | F. Ge, H. Zhou and C. Kou, Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique, Appl. Math. Comput., 2016, 107-120. |
[21] | H. D. Gou and Y. X. Li, A study on impulsive Hilfer fractional evolution equations with nonlocal conditions, Int. J. Nonlinear Sci. Numer. Simul., 2020, 21, 205-218. doi: 10.1515/ijnsns-2019-0015 |
[22] | H. D. Gou and Y. X. Li, The method of lower and upper solutions for impulsive fractional evolution equations, Ann. Funct. Anal., 2020, 11, 350-369. doi: 10.1007/s43034-019-00007-2 |
[23] | W. Grecksch and C. Tudor, Stochastic Evolution Equations: A Hilbert Space Approach, Akademic Verlag, Berlin, 1995. |
[24] | J. Heinonen, T. Kilpel$\ddot{a}$inen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Courier Corporation, North Chelmsford, 2012. |
[25] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006. |
[26] | V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989. |
[27] | Y. J. Li and Y. J. Wang, The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay, J. Differ. Equ., 2019, 266, 3514-3558. doi: 10.1016/j.jde.2018.09.009 |
[28] | J. Liang, J. Liu and T. J. Xiao, Nonlocal cauchy problems governed by compact operator families, Nonlinear Anal., 2004, 57, 183-189. doi: 10.1016/j.na.2004.02.007 |
[29] | K. Liu, Stability of Infinite Dimensional Stochastic Differential Equations with Applications, Chapman and Hall, London, 2006. |
[30] | Y. R. Liu and Y. J. Wang, Asymptotic behaviour of time fractional stochastic delay evolution equations with tempered fractional noise, Discrete Contin. Dyn. Syst. Ser. S, 2023, 16, 2483-2510. doi: 10.3934/dcdss.2022157 |
[31] | X. R. Mao, Stochastic Differential Equations and their Applications, Horwood Publishing Ltd., Chichester, 1997. |
[32] | P. Muthukumar and C. Rajivganthi, Approximate controllability of fractional order neutral stochastic integro-differential system with nonlocal conditions and infinite delay, Taiwanese J. Math., 2013, 17, 1693-1713. |
[33] | R. Sakthivel, P. Revathi and Y. Ren, Existence of solutions for nonlinear fractional stochastic differential equations, Nonlinear Anal., 2013, 81, 70-86. doi: 10.1016/j.na.2012.10.009 |
[34] | R. Sakthivel, S. Suganya and S. M. Anthoni, Approximate controllability of fractional stochastic evolution equations, Comput. Math. Appl., 2012, 63, 660-668. doi: 10.1016/j.camwa.2011.11.024 |
[35] | T. Sathiyaraj, J. R. Wang and P. Balasubramaniam, Controllability and optimal control for a class of time-delayed fractional stochastic integro-differential systems, Appl. Math. Optim., 2021, 84, 2527-2554. doi: 10.1007/s00245-020-09716-w |
[36] | X. B. Shu and Y. Shi, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput., 2016, 273, 465-476. |
[37] | X. B. Shu and F. Xu, Upper and lower solution method for fractional evolution equations with order $1<\alpha<2$, J. Korean Math. Soc., 2014, 51, 1123-1139. doi: 10.4134/JKMS.2014.51.6.1123 |
[38] | K. Sobczyk, Stochastic Differential Equations with Applications to Physics and Engineering, Kluwer Academic Publishers, London, 1991. |
[39] | H. Waheed, A. Zada and J. Xu, Well-posedness and Hyers-Ulam results for a class of impulsive fractional evolution equations, Math. Methods Appl. Sci., 2021, 44, 749-771. doi: 10.1002/mma.6784 |
[40] | J. R. Wang, Approximate mild solutions of fractional stochastic evolution equations in Hilbert spaces, Appl. Math. Comput., 2015, 256, 315-323. |
[41] | J. R. Wang, M. Feckan and Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., 2011, 8, 345-361. doi: 10.4310/DPDE.2011.v8.n4.a3 |
[42] | J. R. Wang, M. Feckan and Y. Zhou, Relaxed controls for nonlinear fractional impulsive evolution equations, J. Optim. Theory Appl., 2013, 156, 13-32. doi: 10.1007/s10957-012-0170-y |
[43] | X. Wang and X. B. Shu, The existence of positive mild solutions for fractional differential evolution equations with nonlocal conditions of order $1<\alpha<2$, Adv. Difference Equ., 2015, 159, 15pp. |
[44] | Z. M. Yan, Time optimal control of system governed by a fractional stochastic partial differential inclusion with clarke subdifferential, Taiwanese J. Math., 2021, 25, 155-181. |
[45] | Z. M. Yan and X. X. Yan, Optimal controls for impulsive partial stochastic differential equations with weighted pseudo almost periodic coefficients, Internat. J. Control, 2021, 94, 111-133. doi: 10.1080/00207179.2019.1585955 |
[46] | Z. M. Yan and Y. H. Zhou, Optimization of exact controllability for fractional impulsive partial stochastic differential systems via analytic sectorial operators, Int. J. Nonlinear Sci. Numer. Simul., 2021, 22, 559-579. doi: 10.1515/ijnsns-2019-0168 |
[47] | M. Yang and Y. Zhou, Hilfer fractional stochastic evolution equations on infinite interval, Int. J. Nonlinear Sci. Numer. Simul., 2023, 24, 1841-1862. doi: 10.1515/ijnsns-2022-0217 |
[48] | Y. Zhou and F. Jiao, Nonlocal cauchy problem for fractional evolution equations, Nonlinear Anal., 2010, 11, 4465-4475. doi: 10.1016/j.nonrwa.2010.05.029 |