2024 Volume 14 Issue 5
Article Contents

Yonghong Ding, Jing Niu. SOLVABILITY AND OPTIMAL CONTROLS OF FRACTIONAL IMPULSIVE STOCHASTIC EVOLUTION EQUATIONS WITH NONLOCAL CONDITIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2622-2642. doi: 10.11948/20230238
Citation: Yonghong Ding, Jing Niu. SOLVABILITY AND OPTIMAL CONTROLS OF FRACTIONAL IMPULSIVE STOCHASTIC EVOLUTION EQUATIONS WITH NONLOCAL CONDITIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2622-2642. doi: 10.11948/20230238

SOLVABILITY AND OPTIMAL CONTROLS OF FRACTIONAL IMPULSIVE STOCHASTIC EVOLUTION EQUATIONS WITH NONLOCAL CONDITIONS

  • Author Bio: Email: niujing2023@163.com(J. Niu)
  • Corresponding author: Email: dyh198510@126.com(Y. Ding) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (12261078), Natural Science Foundation of Gansu Province (21JR11RE031, 22JR11RE193) and Innovation Team of Tianshui Normal University (TDJ2022-03)
  • This paper deals with the solvability and optimal controls of a class of impulsive fractional stochastic evolution equations with nonlocal initial conditions in a Hilbert space. Firstly, the existence and uniqueness of mild solutions for the considered system are investigated. Then, we derive the existence conditions of optimal pairs to the control systems. In the end, an example is presented to illustrate the effectiveness of our abstract results.

    MSC: 49J15, 60H15, 47J35
  • 加载中
  • [1] D. Bainov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Longman Scientific and Technical Group, New York, 1993.

    Google Scholar

    [2] P. Balasubramaniam and P. Tamilalagan, The solvability and optimal controls for impulsive fractional stochastic integro-differential equations via resolvent operators, J. Optim. Theory Appl., 2017, 174, 139-155. doi: 10.1007/s10957-016-0865-6

    CrossRef Google Scholar

    [3] E. Balder, Necessary and sufficient conditions for L1-strong-weak lower semicontinuity of integral functional, Nonlinear Anal., 1987, 11, 1399-1404. doi: 10.1016/0362-546X(87)90092-7

    CrossRef Google Scholar

    [4] M. Benchohra, J. Henderson and S. Ntouyas, Impulsive Differential Equations and Inclusions, in: Contemporary Mathematics and its Applications, Hindawi Publ, Corp, 2006.

    Google Scholar

    [5] L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of solutions of a nonlocal Cauchy problem in a Banach space, Appl. Anal., 1991, 40, 11-19. doi: 10.1080/00036819008839989

    CrossRef Google Scholar

    [6] Y. K. Chang, Y. T. Pei and R. Ponce, Existence and optimal controls for fractional stochastic evolution equations of Sobolev type via fractional resolvent operators, J. Optim. Theory Appl., 2019, 182, 558-572. doi: 10.1007/s10957-018-1314-5

    CrossRef Google Scholar

    [7] R. Chaudhary, Partial approximate controllability results for fractional order stochastic evolution equations using approximation method, Evol. Equ. Control Theory, 2023, 12, 1083-1101. doi: 10.3934/eect.2023001

    CrossRef Google Scholar

    [8] P. Y. Chen, Y. X. Li and X. P. Zhang, On the initial value problem of fractional stochastic evolution equations in Hilbert spaces, Commun. Pure Appl. Anal., 2015, 14, 1817-1840. doi: 10.3934/cpaa.2015.14.1817

    CrossRef Google Scholar

    [9] P. Y. Chen, X. P. Zhang and Y. X. Li, Nonlocal problem for fractional stochastic evolution equations with solution operators, Fract. Calc. Appl. Anal., 2016, 19, 1507-1526. doi: 10.1515/fca-2016-0078

    CrossRef Google Scholar

    [10] P. Chen, X. Zhang and Y. Li, Study on fractional non-autonomous evolution equations with delay, Comput. Math. Appl., 2017, 73, 794-803. doi: 10.1016/j.camwa.2017.01.009

    CrossRef Google Scholar

    [11] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.

    Google Scholar

    [12] K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., 1993, 179, 630-637. doi: 10.1006/jmaa.1993.1373

    CrossRef Google Scholar

    [13] R. Dhayal, M. Malik and S. Abbas, Solvability and optimal controls of non-instantaneous impulsive stochastic fractional differential equation of order $q\in(1, 2)$, Stochastics, 2021, 780-802.

    $q\in(1, 2)$" target="_blank">Google Scholar

    [14] R. Dhayal, M. Malik and S. Abbas, Approximate and trajectory controllability of fractional stochastic differential equation with non-instantaneous impulses and poisson jumps, Asian J. Control, 2021, 2669-2680.

    Google Scholar

    [15] R. Dhayal, M. Malik, S. Abbas, A. Kumar and R. Sakthivel, Approximation theorems for controllability problem governed by fractional differential equation, Evol. Equat. Control Theory, 2021, 411-429.

    Google Scholar

    [16] R. Dhayal, M. Malik and Q. X. Zhu, Optimal controls of impulsive fractional stochastic differential systems driven by rosenblatt process with state-dependent delay, Asian J. Control, 2023. DOI: org/10.1002/asjc.3193.

    Google Scholar

    [17] Y. H. Ding and Y. X. Li, Approximate controllability of fractional stochastic evolution equations with nonlocal conditions, Int. J. Nonlinear Sci. Numer. Simul., 2020, 21, 829-841. doi: 10.1515/ijnsns-2019-0229

    CrossRef Google Scholar

    [18] Y. H. Ding and Y. X. Li, Finite-approximate controllability of impulsive $\psi$-Caputo fractional evolution equations with nonlocal conditions, Fract. Calc. Appl. Anal., 2023, 26, 1326-1358. doi: 10.1007/s13540-023-00164-1

    CrossRef $\psi$-Caputo fractional evolution equations with nonlocal conditions" target="_blank">Google Scholar

    [19] S. Farahi and T. Guendouzi, Approximate controllability of fractional neutral stochastic evolution equations with nonlocal conditions, Results Math., 2014, 65, 501-521. doi: 10.1007/s00025-013-0362-2

    CrossRef Google Scholar

    [20] F. Ge, H. Zhou and C. Kou, Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique, Appl. Math. Comput., 2016, 107-120.

    Google Scholar

    [21] H. D. Gou and Y. X. Li, A study on impulsive Hilfer fractional evolution equations with nonlocal conditions, Int. J. Nonlinear Sci. Numer. Simul., 2020, 21, 205-218. doi: 10.1515/ijnsns-2019-0015

    CrossRef Google Scholar

    [22] H. D. Gou and Y. X. Li, The method of lower and upper solutions for impulsive fractional evolution equations, Ann. Funct. Anal., 2020, 11, 350-369. doi: 10.1007/s43034-019-00007-2

    CrossRef Google Scholar

    [23] W. Grecksch and C. Tudor, Stochastic Evolution Equations: A Hilbert Space Approach, Akademic Verlag, Berlin, 1995.

    Google Scholar

    [24] J. Heinonen, T. Kilpel$\ddot{a}$inen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Courier Corporation, North Chelmsford, 2012.

    Google Scholar

    [25] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006.

    Google Scholar

    [26] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.

    Google Scholar

    [27] Y. J. Li and Y. J. Wang, The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay, J. Differ. Equ., 2019, 266, 3514-3558. doi: 10.1016/j.jde.2018.09.009

    CrossRef Google Scholar

    [28] J. Liang, J. Liu and T. J. Xiao, Nonlocal cauchy problems governed by compact operator families, Nonlinear Anal., 2004, 57, 183-189. doi: 10.1016/j.na.2004.02.007

    CrossRef Google Scholar

    [29] K. Liu, Stability of Infinite Dimensional Stochastic Differential Equations with Applications, Chapman and Hall, London, 2006.

    Google Scholar

    [30] Y. R. Liu and Y. J. Wang, Asymptotic behaviour of time fractional stochastic delay evolution equations with tempered fractional noise, Discrete Contin. Dyn. Syst. Ser. S, 2023, 16, 2483-2510. doi: 10.3934/dcdss.2022157

    CrossRef Google Scholar

    [31] X. R. Mao, Stochastic Differential Equations and their Applications, Horwood Publishing Ltd., Chichester, 1997.

    Google Scholar

    [32] P. Muthukumar and C. Rajivganthi, Approximate controllability of fractional order neutral stochastic integro-differential system with nonlocal conditions and infinite delay, Taiwanese J. Math., 2013, 17, 1693-1713.

    Google Scholar

    [33] R. Sakthivel, P. Revathi and Y. Ren, Existence of solutions for nonlinear fractional stochastic differential equations, Nonlinear Anal., 2013, 81, 70-86. doi: 10.1016/j.na.2012.10.009

    CrossRef Google Scholar

    [34] R. Sakthivel, S. Suganya and S. M. Anthoni, Approximate controllability of fractional stochastic evolution equations, Comput. Math. Appl., 2012, 63, 660-668. doi: 10.1016/j.camwa.2011.11.024

    CrossRef Google Scholar

    [35] T. Sathiyaraj, J. R. Wang and P. Balasubramaniam, Controllability and optimal control for a class of time-delayed fractional stochastic integro-differential systems, Appl. Math. Optim., 2021, 84, 2527-2554. doi: 10.1007/s00245-020-09716-w

    CrossRef Google Scholar

    [36] X. B. Shu and Y. Shi, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput., 2016, 273, 465-476.

    Google Scholar

    [37] X. B. Shu and F. Xu, Upper and lower solution method for fractional evolution equations with order $1<\alpha<2$, J. Korean Math. Soc., 2014, 51, 1123-1139. doi: 10.4134/JKMS.2014.51.6.1123

    CrossRef $1<\alpha<2$" target="_blank">Google Scholar

    [38] K. Sobczyk, Stochastic Differential Equations with Applications to Physics and Engineering, Kluwer Academic Publishers, London, 1991.

    Google Scholar

    [39] H. Waheed, A. Zada and J. Xu, Well-posedness and Hyers-Ulam results for a class of impulsive fractional evolution equations, Math. Methods Appl. Sci., 2021, 44, 749-771. doi: 10.1002/mma.6784

    CrossRef Google Scholar

    [40] J. R. Wang, Approximate mild solutions of fractional stochastic evolution equations in Hilbert spaces, Appl. Math. Comput., 2015, 256, 315-323.

    Google Scholar

    [41] J. R. Wang, M. Feckan and Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., 2011, 8, 345-361. doi: 10.4310/DPDE.2011.v8.n4.a3

    CrossRef Google Scholar

    [42] J. R. Wang, M. Feckan and Y. Zhou, Relaxed controls for nonlinear fractional impulsive evolution equations, J. Optim. Theory Appl., 2013, 156, 13-32. doi: 10.1007/s10957-012-0170-y

    CrossRef Google Scholar

    [43] X. Wang and X. B. Shu, The existence of positive mild solutions for fractional differential evolution equations with nonlocal conditions of order $1<\alpha<2$, Adv. Difference Equ., 2015, 159, 15pp.

    $1<\alpha<2$" target="_blank">Google Scholar

    [44] Z. M. Yan, Time optimal control of system governed by a fractional stochastic partial differential inclusion with clarke subdifferential, Taiwanese J. Math., 2021, 25, 155-181.

    Google Scholar

    [45] Z. M. Yan and X. X. Yan, Optimal controls for impulsive partial stochastic differential equations with weighted pseudo almost periodic coefficients, Internat. J. Control, 2021, 94, 111-133. doi: 10.1080/00207179.2019.1585955

    CrossRef Google Scholar

    [46] Z. M. Yan and Y. H. Zhou, Optimization of exact controllability for fractional impulsive partial stochastic differential systems via analytic sectorial operators, Int. J. Nonlinear Sci. Numer. Simul., 2021, 22, 559-579. doi: 10.1515/ijnsns-2019-0168

    CrossRef Google Scholar

    [47] M. Yang and Y. Zhou, Hilfer fractional stochastic evolution equations on infinite interval, Int. J. Nonlinear Sci. Numer. Simul., 2023, 24, 1841-1862. doi: 10.1515/ijnsns-2022-0217

    CrossRef Google Scholar

    [48] Y. Zhou and F. Jiao, Nonlocal cauchy problem for fractional evolution equations, Nonlinear Anal., 2010, 11, 4465-4475. doi: 10.1016/j.nonrwa.2010.05.029

    CrossRef Google Scholar

Article Metrics

Article views(1079) PDF downloads(620) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint