Citation: | Mykola Ivanovich Yaremenko. UNIVERSAL APPROACH TO THE TAKESAKI-TAKAI $\gamma $-DUALITY[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2643-2652. doi: 10.11948/20230242 |
In this article, we generalize and simplify the proof of the Takesaki-Takai
$ \Upsilon \; :\; Env_{\hat{\omega }} {}^{\gamma } \left(L^{1} \left(\hat{G},\; Env_{\omega } {}^{\gamma } \left(L^{1} \left(G,\; {\rm A}\right)\right)\right)\right)\to {\rm A}\otimes LK\left(L^{2} \left(G\right)\right) $
which is the equivariant for the double dual action
$ \hat{\hat{\omega }}\; :\; G\to Aut\left(Env_{\hat{\omega }} {}^{\gamma } \left(L^{1} \left(\hat{G},\; Env_{\omega } {}^{\gamma } \left(L^{1} \left(G,\; {\rm A}\right)\right)\right)\right)\right). $
These results deepen our understanding of the representation theory and are especially interesting given their possible applications to problems of the quantum theory.
[1] | B. Abadie, Takai duality for crossed products by Hilbert C $\mathrm{\ast }$ -bimodules, J. Operator Theory, 2010, 64, 19-34. |
[2] | S. Albandik and R. Meyer, Product systems over Ore monodies, Doc. Math., 2015, 20, 1331-1402. doi: 10.4171/dm/521 |
[3] | A. Alldridge, C. Max and M. R. Zirnbauer, Bulk-boundary correspondence for disordered free-fermion topological phases, Commun. Math. Phys., 2020, 377, 1761-1821. doi: 10.1007/s00220-019-03581-7 |
[4] |
E. Bedos, S. Kaliszewski, J. Quigg and D. Robertson, A new look at crossed product correspondences and associated C $\mathrm{\ast }$ -algebras, J. Math. Anal. Appl., 2015, 426, 1080-1098. doi: 10.1016/j.jmaa.2015.01.055
CrossRef $\mathrm{\ast }$ -algebras" target="_blank">Google Scholar |
[5] | A. Carey and G. C. Thiang, The Fermi gerbe of Weyl semimetals, Letters Math. Phys., 2021, 111, 1-16. doi: 10.1007/s11005-020-01338-1 |
[6] |
V. Deaconu, Group actions on graphs and C $\mathrm{\ast }$ -correspondences, Houston J. Math., 2018, 44, 147-168.
$\mathrm{\ast }$ -correspondences" target="_blank">Google Scholar |
[7] | V. Deaconu, A. Kumjian and J. Quigg, Group actions on topological graphs, Ergodic Theory Dynam. Systems, 2012, 32, 1527-1566. doi: 10.1017/S014338571100040X |
[8] | A. Dor-On, E. Katsoulis and K. Laca, C*-envelopes for operator algebras with a coaction and couniversal C*-algebras for product systems, Adv. Math., 2022, 400, 108286, 40 pp. doi: 10.1016/j.aim.2022.108286 |
[9] | N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J. Pawlowski, M. Tissier and N. Wschebor, The nonperturbative functional renormalization group and its applications, Physics Reports, 2021, 910, 1-114. doi: 10.1016/j.physrep.2021.01.001 |
[10] | S. Kaliszewski, J. Quigg and D. Robertson, Coactions on Cuntz-Pimsner algebras, Math. Scand., 2015, 116, 222-249. doi: 10.7146/math.scand.a-21161 |
[11] | E. Katsoulis, Non-selfadjoint operator algebras: Dynamics, classification, and C $\mathrm{\ast }$ - envelopes, Recent advances in operator theory and operator algebras, CRC Press, Boca Raton, FL, 2018, 27-81. |
[12] | E. Katsoulis, C$\mathrm{\ast }$ -envelopes and the Hao-Ng isomorphism for discrete groups, International Mathematics Research Notices, 2017, 2017(18), 5751-5768. |
[13] | A. McKee and R. Pourshahami, Amenable and inner amenable actions and approximation properties for crossed products by locally compact groups, Canad. Math. Bull., 2022, 65(2), 381-399. doi: 10.4153/S0008439521000333 |
[14] | F. F. Miao, G. L. Wang and W. Yuan, Product systems of C*-correspondences and Baaj—Skandalis duality, Acta Mathematica Sinica, English Series, 2023, 39(2), 240-256. doi: 10.1007/s10114-023-1294-8 |
[15] | I. Raeburn, Dynamical systems and operator algebras. in national symposium on functional analysis, Optimization and Applications, Australian National University, Mathematical Sciences Institute, 1999, 109-119. |
[16] |
S. Sundar, C$\mathrm{\ast }$-algebras associated to topological Ore semigroups, Munster J. of Math., 2016, 9(1), 155-185.
$\mathrm{\ast }$-algebras associated to topological Ore semigroups" target="_blank">Google Scholar |
[17] | G. Szabo, Equivariant property (SI) revisited, Anal. PDE, 2021, 14(4), 1199-1232. doi: 10.2140/apde.2021.14.1199 |
[18] | M. I. Yaremenko, Calderon-Zygmund operators and singular integrals, Applied Mathematics & Information Sciences, 2021, 15(1), Article 13. |