Citation: | Ruichang Pei. ON GROUND STATE OF FRACTIONAL P-KIRCHHOFF EQUATION INVOLVING SUBCRITICAL AND CRITICAL EXPONENTIAL GROWTH[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2653-2672. doi: 10.11948/20230317 |
In this paper, we concern the existence of nontrivial ground state solutions of fractional $ p $-Kirchhoff equation
$ \left\{\begin{array}{ll} m\left(\|u\|^p\right) [(-\Delta)_p^su+V(x)|u|^{p-2}u] =f(x,u) \quad\text{in}\, \mathbb{R}^N, \\ \|u\|=\left(\int_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}dxdy +\int_{\mathbb{R}^N}V(x)|u|^pdx\right)^{\frac{1}{p}}, \end{array}\right. $
where $ m:[0,+\infty)\rightarrow [0,+\infty) $ is a continuous function, $ (-\Delta)_p^s $ is the fractional $ p $-Laplacian operator with $ 0<s<1<p<\infty $, $ V:\mathbb{R}^N\rightarrow [0,+\infty) $ is a continuous and $ 1 $ periodic function and $ f\in C (\mathbb{R}^N\times \mathbb{R}) $ is $ 1 $-periodic in $ x_1,\cdot\cdot\cdot,x_N. $ When the nonlinearity $ f(x,u) $ has subcritical or critical exponential growth at $ \infty $ without satisfying the Ambrosetti-Rabinowitz (AR) condition some existence results for nontrivial ground state solutions are obtained by using the minimax techniques, Nehari manifold methods combined with the fractional Moser-Trudinger inequality.
[1] | A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 1973, 14(4), 349-381. doi: 10.1016/0022-1236(73)90051-7 |
[2] | H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 1983, 36(4), 437-477. doi: 10.1002/cpa.3160360405 |
[3] |
M. Caponi and P. Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional $p$-Laplacian equations, Ann. Mat. Pura Appl., 2016, 195, 2099-2129. doi: 10.1007/s10231-016-0555-x
CrossRef $p$-Laplacian equations" target="_blank">Google Scholar |
[4] |
D. G. Costa and O. H. Miyagaki, Nontrivial solutions for perturbations of the $p$-Laplacian on unbounded domains, J. Math. Anal. Appl., 1995, 193(3), 737-755. doi: 10.1006/jmaa.1995.1264
CrossRef $p$-Laplacian on unbounded domains" target="_blank">Google Scholar |
[5] |
D. G. de Figueiredo, J. M. doÓ and B. Ruf, Elliptic equations in $\mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differ. Equ., 1995, 3, 139-153. doi: 10.1007/BF01205003
CrossRef $\mathbb{R}^2$ with nonlinearities in the critical growth range" target="_blank">Google Scholar |
[6] |
D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Corrigendum: Elliptic equations in $\mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differ. Equ., 1996, 2, 203-203.
$\mathbb{R}^2$ with nonlinearities in the critical growth range" target="_blank">Google Scholar |
[7] | E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 2012, 136(5), 521-573. doi: 10.1016/j.bulsci.2011.12.004 |
[8] | A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 2014, 94, 156-170. doi: 10.1016/j.na.2013.08.011 |
[9] |
L. Lam and G. Z. Lu, Existence and multiplicity of solutions to equations of $N$-Laplacian type with critical exponential growth in $\mathbb{R}^N$, J. Funct. Anal., 2012, 262(3), 1132-1165. doi: 10.1016/j.jfa.2011.10.012
CrossRef $N$-Laplacian type with critical exponential growth in |
[10] | N. Laskin, Fractional quantum mechanics, Phys. Rev. E, 2000, 62, 3135. doi: 10.1103/PhysRevE.62.3135 |
[11] | N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A, 2000, 268(4-6), 298-305. doi: 10.1016/S0375-9601(00)00201-2 |
[12] | P. L. Lions, The concentration-compactness principle in the calculus of variations, the locally compact case, Part 2, Ann. Inst. H. Poincaré Anal. non Linéaire, 1984, 1, 223-283. doi: 10.1016/s0294-1449(16)30422-x |
[13] | Z. L. Liu and Z. Q. Wang, On the Ambrosetti-Rabinowitz superlinear condition, Adv. Nonlinear Stud., 2004, 4(4), 563-574. doi: 10.1515/ans-2004-0411 |
[14] | K. Perera and M. Squassina, Bifurcation results for problems with fractional Trudinger-Moser nonlinearity, Discrete Contin. Dyn. Syst. Ser. S, 2018, 11(3), 561-576. |
[15] |
P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in $\mathbb{R}^N$ involving nonlocal operators, Rev. Mat. Iberoam., 2016, 32(1), 1-22. doi: 10.4171/rmi/879
CrossRef $\mathbb{R}^N$ involving nonlocal operators" target="_blank">Google Scholar |
[16] |
P. Pucci, M. Xiang and B. Zhang, Multiple solutions for nonhomogeneous Schrödinger -Kirchhoff type equations involving the fractional $p$-Laplacian in $\mathbb{R}^N$, Calc. Var. Partial Differ. Equ., 2015, 54, 2785-2806. doi: 10.1007/s00526-015-0883-5
CrossRef $p$-Laplacian in |
[17] |
P. Pucci, M. Xiang and B. Zhang, Existence and multiplicity of entire solutions for fractional $p$-Kirchhoff equations, Adv. Nonlinear Anal., 2016, 5(1), 27-55. doi: 10.1515/anona-2015-0102
CrossRef $p$-Kirchhoff equations" target="_blank">Google Scholar |
[18] | F. Takahashi, Critical and subcritical fractional Trudinger Moser-type inequalities on $\mathbb{R}$, Advances in Nonlinear Analysis, 2019, 8(1), 868-884. |
[19] | M. Xiang, V. D. Rădulescu and B. Zhang, Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity, Calc. Var. Partial Differ. Equ., 2019, 58, 57. doi: 10.1007/s00526-019-1499-y |
[20] |
M. Xiang, B. Zhang and M. Ferrara, Multiplicity results for the non-homogeneous fractional $p$-Kirchhoff equations with concave-convex nonlinearities, Proc. Roy. Soc. A, 2015, 471(2177), 14 pp.
$p$-Kirchhoff equations with concave-convex nonlinearities" target="_blank">Google Scholar |
[21] | M. Xiang, B. Zhang and D. Repovš, Existence and multiplicity of solutions for fractional Schrödinger-Kirchhoff equations with Trudinger-Moser nonlinearity, Nonlinear Anal., 2019, 186, 74-98. doi: 10.1016/j.na.2018.11.008 |
[22] |
M. Xiang, B. Zhang and X. Zhang, A nonhomogeneous fractional $p$-Kirchhoff-type problem involving critical exponent in $\mathbb{R}^N$, Adv. Nonlinear Stud., 2017, 17(3), 611-640. doi: 10.1515/ans-2016-6002
CrossRef $p$-Kirchhoff-type problem involving critical exponent in |
[23] | C. F. Zhang, Trudinger-Moser inequalities in fractional Sobolev-Slobodeckij spaces and multiplicity of weak solutions to the fractional-Laplacian equation, Adv. Nonlinear Stud., 2019, 19(1), 197-218. doi: 10.1515/ans-2018-2026 |