Citation: | Haide Gou. MONOTONE ITERATIVE TECHNIQUE FOR FRACTIONAL MEASURE DIFFERENTIAL EQUATIONS IN ORDERED BANACH SPACE[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2673-2703. doi: 10.11948/20230327 |
This article is based on the monotonic iterative method in the presence of upper and lower solutions, and investigates the existence of $ S $-asymptotic $ \omega $-periodic mild solutions for a class of fractional measure differential equations with nonlocal conditions in an ordered Banach spaces. Firstly, in the case of upper and lower solutions, a monotonic iterative method is constructed to obtain the maximal and minimal $ S $-asymptotically $ \omega $-periodic mild solution to our concern problem. Secondly, we establish an existence result of $ S $-asymptotically $ \omega $-periodic mild solutions for the mentioned without assuming the existence of upper and lower $ S $-asymptotically $ \omega $-periodic mild solutions under generalized monotonic conditions and non compactness measure conditions of nonlinear terms. Finally, as an application of abstract results, an example is provided to illustrate our main findings.
[1] | D. Araya and C. Lizama, Almost automorphic mild solutions to fractional differential equations, Nonlinear Analysis, 2008, 69(11), 3692-3705. doi: 10.1016/j.na.2007.10.004 |
[2] | W. Arendt, C. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy-Problems, Monographs in Mathematics, 2001, 96. Birkhäuser, Basel. |
[3] | J. Banas and K. Goebel, Measure of Noncompactness in Banach Spaces, Lect. Notes Pure Appl. Math., New York: Marcel Dekker, 1980. |
[4] | J. Banaś and M. Mursaleen, Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations, Springer, 2014. |
[5] | B. Brogliato, Nonsmooth Mechanics: Models, Dynamics, and Control, Springer, 1996. |
[6] | A. Caicedo and C. Cuevas, S-asymptotically $\omega$-periodic solutions of abstract partial neutral integro-differential equations, Functional Differential Equations, 2010, 17(1-2). |
[7] | Y. Cao and J. Sun, Existence of solutions for semilinear measure driven equations, Journal of Mathematical Analysis and Applications, 2015, 425(2), 621-631. doi: 10.1016/j.jmaa.2014.12.042 |
[8] | Y. Cao and J. Sun, Measures of noncompactness in spaces of regulated functionwith application to semilinear measure driven equations, Boundary Value Problems, 2016, 2016(38), 1-17. |
[9] | Y. Cao and J. Sun, On existence of nonlinear measure driven equations involving non-absolutely convergent integrals, Nonlinear Anal. Hybrid Syst., 2016, 20, 72-81. doi: 10.1016/j.nahs.2015.11.003 |
[10] | Y. Cao and J. Sun, Approximate controllability of semilinear measure driven systems, Mathematische Nachrichten, 2018, 291(13), 1979-1988. doi: 10.1002/mana.201600200 |
[11] | X. Chen and L. Cheng, On countable determination of the Kuratowski measure of noncompactness, J. Math. Anal. Appl., 2021, 504, 125370. doi: 10.1016/j.jmaa.2021.125370 |
[12] | M. Cichoń and B. R. Satco, Easure differential inclusions-between continuous and discrete, Adv. Difference Equ., 2014, 56. |
[13] |
C. Cuevas and J. C. De Souza, S-asymptotically $\omega$-periodic solutions of semilinear fractional integro-differential equations, Applied Mathematics Letters, 2009, 22(6), 865-870. doi: 10.1016/j.aml.2008.07.013
CrossRef $\omega$-periodic solutions of semilinear fractional integro-differential equations" target="_blank">Google Scholar |
[14] | C. Cuevas, H. R. Henriquez and H. Soto, Asymptotically periodic solutions of fractional differential equations, Appl. Math. Comput., 2014, 236, 524-545. |
[15] | C. Cuevas and C. Lizama, Almost automorphic solutions to a class of semilinear fractional differential equations, Applied Mathematics Letters, 2008, 21, 1315-1319. doi: 10.1016/j.aml.2008.02.001 |
[16] | C. Cuevas and C. Lizama, Almost automorphic solutions to integral equations on the line, Semigroup Forum., 2009, 79, 461-472. doi: 10.1007/s00233-009-9154-0 |
[17] | C. Cuevas and M. Pinto, Existence and uniqueness of pseudo almost periodic solutions of semilinear Cauchy problems with non dense domain, Nonlinear Analysis, 2001, 45, 73-83. doi: 10.1016/S0362-546X(99)00330-2 |
[18] |
C. Cuevas and J. Souza, Existence of $S$-asymptotically $\omega$-periodic solutions for fractional order functional integro-differential equations with infinite delay, Nonlinear Anal., 2010, 72, 1683-1689. doi: 10.1016/j.na.2009.09.007
CrossRef $S$-asymptotically |
[19] | P. C. Das and R. R. Sharma, Existence and stability of measure differential equations, Czechoslovak Math. J., 1972, 22(97), 145-158. |
[20] | B. de Andrade and C. Cuevas, Almost automorphic and pseudo almost automorphic solutions to semilinear evolution equations with non dense domain, Journal of Inequalities and Applications, 2009, 2009(8), Article ID 298207. |
[21] | B. de Andrade and C. Cuevas, Compact almost automorphic solutions to semilinear Cauchy problems with nondense domain, Applied Mathematics and Computation, 2009, 215, 2843-2849. doi: 10.1016/j.amc.2009.09.025 |
[22] | B. de Andrade and C. Cuevas, S-asymptotically $\omega$-periodic and asymptotically $\omega$-periodic solutions to semilinear Cauchy problems with non dense domain, Nonlinear Analysis Series A: Theory, Methods and Applications, 2010, 72, 3190-3208. |
[23] | J. Diestel, W. M. Ruess and W. Schachermayer, Weak compactness in $l.1(\mu, x)$, Proc. Amer. Math. Soc., 1993, 118, 447-453. |
[24] | A. Diop, On approximate controllability of multi-term time fractional measure differential equations with nonlocal conditions, Fractional Calculus and Applied Analysis, 2022, 25, 2090-2112. doi: 10.1007/s13540-022-00075-7 |
[25] | A. Diop, Existence of mild solutions for multi-term time fractional measure differential equations, The Journal of Analysis, 2022, 30, 1609-1623. doi: 10.1007/s41478-022-00420-2 |
[26] | A. Diop, M. A. Diop, K. Ezzinbi and Paul dit A. Guindo, Optimal controls problems for some impulsive stochastic integro-differential equations with state-dependent delay, Stochastics, 2022, 94(5/8), 1186-1220. |
[27] | M. Federson, J. G. Mesquita and A. Slavìk, Measure functional differential equations and functional dynamic equations on time scales, J. Differential Equations, 2012, 252, 3816-3847. doi: 10.1016/j.jde.2011.11.005 |
[28] | M. Federson, J. G. Mesquita and A. Slavìk, Basic results for functional differential and dynamic equations involving impulses, Math. Nachr., 2013, 286(2-3), 181-204. doi: 10.1002/mana.201200006 |
[29] | H. Gou, On the $S$-asymptotically $\omega$-periodic mild solutions for multi-time fractional measure differential equations, Topological Methods in Nonlinear Analysis, 2023, 62(2), 569-590. |
[30] | H. Gou and Y. Li, Existence and Approximate Controllability of Semilinear Measure Driven Systems with Nonlocal Conditions, Bulletin of the Iranian Mathematical Society, 2022, 48, 769-789. doi: 10.1007/s41980-021-00546-2 |
[31] | R. C. Grimmer, Asymptotically almost periodic solutions of differential equations, SIAM Journal on Applied Mathematics, 1969, 17, 109-115. doi: 10.1137/0117012 |
[32] | H. Gu and Y. Sun, Nonlocal controllability of fractional measure evolution equation, Journal of Inequalities and Applications, 2020, 1(2020), 1-18. |
[33] | D. Guo, Nonlinear Functional Analysis, Shandong Science and Technology, Jinan, (Chinese), 1985. |
[34] | D. Guo and J. Sun, Ordinary Differential Equations in Abstract Spaces, Shandong Science and Technology, Jinan, (Chinese), 1989. |
[35] | G. Haiyin, W. Ke, W. Feng and D. Xiao, Massera-type theorem and asymptotically periodic logistic equations, Nonlinear Analysis: Real World Applications, 2006, 7, 1268-1283. doi: 10.1016/j.nonrwa.2005.11.008 |
[36] | H. P. Heinz, On the behaviour of measures of noncompactness with respect to differential and integration of vector-valued functions, Nonlinear Anal., 1983, 7, 1351-1371. doi: 10.1016/0362-546X(83)90006-8 |
[37] | H. Henrìquez and C. Lizama, Compact almost automorphic solutions to integral equations with infinite delay, Nonlinear Analysis, 2009, 71, 6029-6037. doi: 10.1016/j.na.2009.05.042 |
[38] |
H. R. Henrìquez, M. Pierri and P. Táboas, On $S$-asymptotically $\omega$-periodic functions on Banach spaces and applications, J. Math. Anal. Appl., 2008, 343, 1119-1130. doi: 10.1016/j.jmaa.2008.02.023
CrossRef $S$-asymptotically |
[39] | E. Hernandez and D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., 2013, 141, 1641-1649. |
[40] | Y. Hino, T. Naito, N. V. Minh and J. Shin, Almost Periodic Solutions of Differential Equations in Banach Spaces, Taylor & Francis, London, New York, 2002. |
[41] | M. I. Kamenskii, V. V. Obukhovskll and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, 2001. |
[42] | V. Keyantuo, C. Lizama and M. Warma, Asymptotic behavior of fractional order semilinear evolution equations, Differential and Integral Equations, 2013, 26 (7-8), 757-780. |
[43] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 2006, 204. Amsterdam: Elsevier Science B. V. |
[44] | Y. J. Kim, Stieltjes derivatives and its applications to integral inequalities of Stieltjes type, J. Korean Soc. Math. Educ. Ser. B Pure App. Math., 2011, 18(1), 63-78. |
[45] | R. I. Leine and T. F. Heimsch, Global uniform symptotic attractive stability of the non-autonomous bouncing ball system, Phys. D., 2012, 241, 2029-2041. doi: 10.1016/j.physd.2011.04.013 |
[46] | F. Li, J. Liang and H. Wang, $S$-asymptotically $\omega$-periodic solution for fractional differential equations of order $q\in (0, 1)$ with finite delay, Adv. Difference Equ., 2017, 83, 14 pp. |
[47] |
F. Li and H. Wang, $S$-asymptotically $\omega$-periodic mild solutions of neutral fractional differential equations with finite delay in Banach space, Mediterr. J. Math., 2017, 14, 57. doi: 10.1007/s00009-017-0855-4
CrossRef $S$-asymptotically |
[48] | Q. Li, G. Wang and M. Wei, Monotone iterative technique for time-space fractional diffusion equations involving delay, Nonlinear Anal: Model., 2021, 26, 241-258. doi: 10.15388/namc.2021.26.21656 |
[49] | Y. Li, The positive solutions of abstract semilinear evolution equations and their applications, Acta Math. Sin. (Chinese), 1996, 39, 666-672. |
[50] |
S. M. Manou-Abi and W. Dimbour, On the $p$-th mean $S$-asymptotically omega periodic solution for some stochastic evolution equation driven by $\mathcal{Q}$-brownian motion, 2018. |
[51] | J. G. Mesquita, Measure Functional Differential Equations and Impulsive Functional Dynamic Equations on Time Scales, Universidade de Sao Paulo, Brazil, Ph. D. thesis, 2012. |
[52] | B. M. Miller and E. Y. Rubinovich, Impulsive Control in Continuous and Discrete Continuous Systems, Kluwer Academic Publishers, NewYork, Boston, Dordrecht, London, Moscow, 2003. |
[53] | J. J. Moreau, Unilateral contact and dry friction in finite freedom dynamics, in: Nonsmooth Mechanics and Applications, Springer-Verlag, NewYork, 1988, 1-82. |
[54] | G. M. N'Guérékata, Existence and uniqueness of almost automorphic mild solutions of some semilinear abstract differential equations, Semigroup Forum, 2004, 69, 80-86. doi: 10.1007/s00233-003-0021-0 |
[55] | S. G. Pandit and S. G. Deo, Differential Systems Involving Impulses, Springer, 1982. |
[56] | E. A. Pardo and C. Lizama, Mild solutions for multi-term time-fractional differential equations with nonlocal initial conditions, Electronic Journal of Differential Equations, 2020, 39, 1-10. |
[57] | A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. |
[58] |
M. Pierri, On $S$-asymptotically $\omega$-periodic functions and applications, Nonlinear Anal, 2012, 75, 651-661. doi: 10.1016/j.na.2011.08.059
CrossRef $S$-asymptotically |
[59] | I. Podlubny, Fractional differential equations, New York, NY: Academic Press, 1999. |
[60] | L. Ren, J. Wang and M. Fečkan, Asymptotically periodic solutions for Caputo type fractional evolution equations, Fract. Calc. Appl. Anal., 2018, 21, 1294-1312. doi: 10.1515/fca-2018-0068 |
[61] | B. Satco, Regulated solutions for nonlinear measure driven equations, Nonlinear Anal. Hybrid Syst., 2014, 13, 22-31. doi: 10.1016/j.nahs.2014.02.001 |
[62] | R. R. Sharma, An abstract measure differential equation, Proc. Amer. Math. Soc., 1972, 32, 503-510. doi: 10.1090/S0002-9939-1972-0291600-3 |
[63] | X. Shu, F. Xu and Y. Shi, $S$-asymptotically $\omega$-positive periodic solutions for a class of neutral fractional differential equations, Appl. Math. Comput., 2015, 270, 768-776. |
[64] | V. Singh and D. N. Pandey, Controllability of multi-term time-fractional differential systems, Journal of Control and Decision, 2020, 7(2), 109-125. doi: 10.1080/23307706.2018.1495584 |
[65] | K. Surendra and P. A. Ravi, Existence of solution non-autonomous semilinear measure driven equations, Differential Equation & Application, 2020, 12(3), 313-322. |
[66] | L. V. Trong, Decay mild solutions for two-term time fractional differential equations in Banach spaces, Journal Fixed Point Theory and Applications, 2016, 18, 417-432. doi: 10.1007/s11784-016-0281-4 |
[67] | N. V. Wouw and R. I. Leine, Tracking control for a class of measure differential inclusions, in: Proceedings of the 47th IEEE Conference on Decision and Control, 2008. |
[68] | S. T. Zavalishchin and A. N. Sesekin, Dynamic Impulse Systems: Theory and Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997. |