2023 Volume 13 Issue 2
Article Contents

Weichao Qian. KAM THEOREM AND ISO-ENERGETIC KAM THEOREM ON POISSON MANIFOLD[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 1088-1107. doi: 10.11948/20220576
Citation: Weichao Qian. KAM THEOREM AND ISO-ENERGETIC KAM THEOREM ON POISSON MANIFOLD[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 1088-1107. doi: 10.11948/20220576

KAM THEOREM AND ISO-ENERGETIC KAM THEOREM ON POISSON MANIFOLD

  • In present paper, we give KAM theorem and iso-energetic KAM theorem for Hamiltonian system on $n-$dimensional Poisson manifold $(M, \Pi)$ with $rank ~\Pi = 2r$ everywhere, where $\Pi$ is given a bivector field, $2r < n$.

    MSC: 37J40
  • 加载中
  • [1] V. Arnold, Proof of a theorem by A. N. Kolmogorov on the preservation of quasi-periodic motions under small perturbations of the Hamiltonian, Usp. Mat. Nauk., 1963, 113(5), 13–40.

    Google Scholar

    [2] V. Arnold, V. Kozlov and A. Neishtadt, Mathematical aspects of classical and celestial mechanics, Springer-Verlag, Berlin, 2006.

    Google Scholar

    [3] J. Cary and R. Littlejohn, Hamiltonian mechanics and its application to magnetic field line flow, Ann. Phys., 1982, 151(1), 1–34.

    Google Scholar

    [4] C. Cheng and Y. Sun, Existence of invariant tori in three dimensional measure-preserving mapping, Celestial Mech. Dyn. Astron., 1990, 47(3), 275–292. doi: 10.1007/BF00053456

    CrossRef Google Scholar

    [5] S. Chow, Y. Li and Y. Yi, Persistence of invariant tori on submanifolds in Hamiltonian systems, J. Nonlinear Sci., 2002, 12(6), 585–617.

    Google Scholar

    [6] F. Cong and Y. Li, Existence of higher-dimensional invariant tori for Hamiltonian systems, J. Math. Anal. Appl., 1998, 222(1), 255–267. doi: 10.1006/jmaa.1998.5939

    CrossRef Google Scholar

    [7] F. Cong, T. K$\ddot{u}$pper, Y. Li and J. You, KAM-type theorem on resonant surfaces for nearly integrable Hamiltonian systems, J. Nonlinear Sci., 2000, 10(1), 49–68. doi: 10.1007/s003329910003

    CrossRef Google Scholar

    [8] L. Eliasson, Perturbations of stable invariant tori for Hamiltonian systems, Ann. Sc. Norm. Super. Pisa Cl. Sci., 1988, 15(1), 115–147.

    Google Scholar

    [9] A. Fortunati and S. Wiggins, A Kolmogorov theorem for nearly integrable Poisson systems with asymptotically decaying time-dependent perturbation, Regul. Chaotic Dyn., 2015, 20(4), 476–485. doi: 10.1134/S1560354715040061

    CrossRef Google Scholar

    [10] Y. Han, Y. Li and Y. Yi, Degenerate lower dimensional tori in Hamiltonian systems, J. Differ. Equ., 2006, 227(2), 670–691. doi: 10.1016/j.jde.2006.02.006

    CrossRef Google Scholar

    [11] Y. Han, Y. Li and Y. Yi, Invariant tori in Hamiltonian systems with high order proper degeneracy, Ann. Henri Poincar$\acute{e}$, 2010, 10(8), 1419–1436. doi: 10.1007/s00023-010-0026-7

    CrossRef Google Scholar

    [12] M. Herman, Différéntiabilité optimae et contreexemples à la fermeture en topologie $C^{\infty}$ des orbites récurrentes de flots hamiltoniens, C. R. Acad. Sci., Paris. Sér. I Math., 1991, 313(1), 49–51.

    $C^{\infty}$ des orbites récurrentes de flots hamiltoniens" target="_blank">Google Scholar

    [13] M. Herman, Exemples de flots Hamiltoniens dont aucune perturbation en topologie $C^{\infty}$ n'a d'orbites périodiques sur un ouvert de surfaces dénergies, C. R. Acad. Sci., Paris. Sér. I Math., 1991, 312(13), 989–994.

    $C^{\infty}$ n'a d'orbites périodiques sur un ouvert de surfaces dénergies" target="_blank">Google Scholar

    [14] Q. Huang, F. Cong and Y. Li, Persistence of elliptic invariant tori for Hamiltonian systems, Nonlinear Anal., 2001, 45(2), 241–260. doi: 10.1016/S0362-546X(99)00407-1

    CrossRef Google Scholar

    [15] Q. Huang, F. Cong and Y. Li, Persistence of hyperbolic invariant tori for Hamiltonian systems, J. Differ. Equ., 2000, 164(2), 355–379. doi: 10.1006/jdeq.2000.3762

    CrossRef Google Scholar

    [16] S. Kuksin, Nearly integrable infinite-dimensional Hamiltonian systems, Springer-Verlag, 1993.

    Google Scholar

    [17] S. Kuksin, Hamiltonian perturbations of infinite dimensional linear systems with an imaginary spectrum, Funct. Anal. Appl., 1987, 21, 192–205. doi: 10.1007/BF02577134

    CrossRef Google Scholar

    [18] S. Kuksin, Elements of a qualitative theory of Hamiltonian PDEs, Doc. Math. J. DMV (Extra volume ICM) Ⅱ, 1998, 819–829.

    Google Scholar

    [19] A. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function, Dokl. Akad. Nauk USSR, 1954, 98, 527–530.

    Google Scholar

    [20] C. Laurent-Gengoux, E. Miranda and P. Vanhaecke, Action-angle coordinates for integrable systems on Poisson manifolds, Int. Math. Res. Not. IMRN, 2011, 1839–1869.

    Google Scholar

    [21] X. Li and Z. Shang, On the existence of invariant tori in non-conservative dynamical systems with degeneracy and finite differentiability, Discrete Contin. Dyn. Syst., 2019, 39(7), 4225–4257. doi: 10.3934/dcds.2019171

    CrossRef Google Scholar

    [22] Y. Li and Y. Yi, Persistence of invariant tori in generalized Hamiltonian systems, Ergod. Theor. Dyn. Sys., 2002, 22(4), 1233–1261.

    Google Scholar

    [23] Y. Li and Y. Yi, A quasi-periodic Poincaré's Theorem, Math. Ann., 2003, 326(4), 649–690. doi: 10.1007/s00208-002-0399-0

    CrossRef Google Scholar

    [24] Y. Li and Y. Yi, Persistence of lower dimensional tori of general types in Hamiltonian systems, Trans. Amer. Math. Soc., 2005, 357(4), 15650–1600.

    Google Scholar

    [25] R. de la Llave, Recent progress in classical mechanics, Springer, Berlin, 1992, 3–19.

    Google Scholar

    [26] V. Melnikov, On some cases of the conservation of conditionally periodic motions under a small change of the Hamiltonian function, Soviet Math. Dokl., 1965, 165, 1592–1596.

    Google Scholar

    [27] V. Melnikov, A family of conditionally periodic solutions of a Hamiltonian system, Soviet Math. Dokl., 1968, 181, 882–886.

    Google Scholar

    [28] I. Mezi$\acute{c}$ and S. Wiggins, On the integrability and perturbation of three-dimensional fluid flows with symmetry, J. Nonlinear Sci., 1994, 4(2), 157–194.

    Google Scholar

    [29] J. Moser, On invariant curves of area preserving mappings of an annulus, Nathr. Akad. Wiss. Gott. Math. Phys. K1., 1962, 1–20.

    Google Scholar

    [30] J. Moser, Convergent series expansions for quasi-periodic motions, Math. Ann., 1967, 169, 136–176. doi: 10.1007/BF01399536

    CrossRef Google Scholar

    [31] J. Moser, Old and new applications of KAM theory. Hamiltonian Systems with Three or More Degrees of Freedom (S'Agaró, 1995) (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 533) Kluwer, Dordrecht, 1999, 184–192.

    Google Scholar

    [32] P. Olver, Applications of Lie Groups to Differential Equations, Springer, New York, 1986.

    Google Scholar

    [33] I. Parasyuk, Preservation of multidimensional invariant tori of Hamiltonian systems, Ukraine Mat. Zh., 1984, 36(4), 467–473.

    Google Scholar

    [34] J. P$\ddot{o}$schel, Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math., 1982, 35(5), 653–696. doi: 10.1002/cpa.3160350504

    CrossRef Google Scholar

    [35] J. P$\ddot{o}$schel, On the elliptic lower dimensional tori in Hamiltonian systems, Math. Z., 1989, 202(4), 559–608. doi: 10.1007/BF01221590

    CrossRef Google Scholar

    [36] J. P$\ddot{o}$schel, A KAM-theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. Ser. IV, 1996, 23 (1), 119–148.

    Google Scholar

    [37] W. Qian, Y, Li and X. Yang, The isoenergetic KAM-type theorem at resonant case for nearly integrable Hamiltonian systems, J. Appl. Anal. Comput., 2019, 9(5), 1616–1638.

    Google Scholar

    [38] W. Qian, Y, Li and X. Yang, Multiscale KAM theorem for Hamiltonian systems, J. Differ. Equ., 2019, 266(1), 70–86. doi: 10.1016/j.jde.2018.07.039

    CrossRef Google Scholar

    [39] W. Qian, Y, Li and X. Yang, Melnikov's Conditions in Matrices, J. Dynam. Differential Equations, 2020, 32(4), 1779–1795. doi: 10.1007/s10884-019-09781-y

    CrossRef Google Scholar

    [40] W. Qian, Y, Li and X. Yang, Persistence of Lagrange invariant tori at tangent degeneracy, J. Differ. Equ., 2020, 268(9), 5078–5112. doi: 10.1016/j.jde.2019.11.001

    CrossRef Google Scholar

    [41] H. R$\ddot{u}$ssmann, Talk held at the ETH Zfirich February, 1986.

    Google Scholar

    [42] M. Sevryuk, Some problems of the KAM-theory: conditionally periodic motions in typical systems, Russian Math. Surveys, 1995, 50(2), 341–353. doi: 10.1070/RM1995v050n02ABEH002059

    CrossRef Google Scholar

    [43] M. Sevryuk, The classical KAM theory at the dawn of the twenty-first century, Dedicated to Vladimir Igorevich Arnold on the occasion of his 65th birthday, Mosc. Math. J., 2003, 3(3), 1113–1144, 1201–1202. doi: 10.17323/1609-4514-2003-3-3-1113-1144

    CrossRef Google Scholar

    [44] D. Treshchëv, Mechanism for destroying resonance tori of Hamiltonian systems, Mat. USSR Sb., 1989, 180(10), 1325–1346.

    Google Scholar

    [45] D. Treshchëv and O. Zubelevich, Introduction to the perturbation theory of Hamiltonian systems, Springer-Verlag, Berlin, 2010.

    Google Scholar

    [46] L. Xu, Y. Li and Y. Yi, Lower-dimensional tori in multi-scale, nearly integrable Hamiltonian systems, Ann. Henri Poincar$\acute{e}$, 2017, 18(1), 53–83. doi: 10.1007/s00023-016-0516-3

    CrossRef Google Scholar

    [47] L. Xu, Y. Li and Y. Yi, Poincaré-Treshchev mechanism in multiscale, nearly integrable Hamiltonian systems, J. Nonlinear Sci., 2018, 28(1), 337–369. doi: 10.1007/s00332-017-9410-5

    CrossRef Google Scholar

    [48] L. Xu and Y. Yi, Lower dimension tori of general types in multi-scale Hamiltonian systems, Nonlinearity, 2019, 32(6), 2226–2245. doi: 10.1088/1361-6544/ab0908

    CrossRef Google Scholar

    [49] J. Yoccoz, Travaux de Herman sur les tores invariants, Asterisque, 1992, 206(4), 311–344.

    Google Scholar

    [50] J. You, Perturbations of lower-dimensional tori for Hamiltonian systems, J. Differ. Equ., 1999, 152(1), 1–29. doi: 10.1006/jdeq.1998.3515

    CrossRef Google Scholar

    [51] X. Zhao and Y. Li, A Moser theorem for multiscale mappings, Discrete Contin. Dyn. Syst., 2022, 42(8), 3931–3951. doi: 10.3934/dcds.2022037

    CrossRef Google Scholar

Article Metrics

Article views(1710) PDF downloads(376) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint