Citation: | Reetika Chawla, Komal Deswal, Devendra Kumar. A NEW NUMERICAL APPROACH OF SOLVING FRACTIONAL MOBILE-IMMOBILE TRANSPORT EQUATION USING ATANGANA-BALEANU DERIVATIVE[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2874-2895. doi: 10.11948/20230044 |
A numerical scheme comprising the Crank-Nicolson difference sch-eme in the temporal direction and cubic trigonometric $B$-spline method in the spatial direction is examined for the numerical solution of the variable coefficient time-fractional mobile-immobile solute transport equation. The time-fractional derivative is evaluated using the Atangana-Baleanu Caputo derivative. The equation has advection, dispersion, and reaction coefficients that can be influenced simultaneously by space and time variables. The present numerical scheme is unconditionally stable and second-order convergent in the temporal and spatial directions. Several test problems are solved to confirm the theoretical results.
[1] | A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 2016, 20, 763–769. doi: 10.2298/TSCI160111018A |
[2] | E. Bas and R. Ozarslan, Real world applications of fractional models by Atangana-Baleanu fractional derivative, Chaos Solitions Fractals, 2018, 116, 121–125. doi: 10.1016/j.chaos.2018.09.019 |
[3] | C. D. Boor, On the convergence of odd-degree spline interpolation, J. Approx. Theory, 1968, 1(4), 452–463. doi: 10.1016/0021-9045(68)90033-6 |
[4] | M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 2015, 1(2), 73–85. |
[5] | R. Chawla, K. Deswal, D. Kumar and D. Baleanu, A novel finite difference based numerical approach for Modified Atangana-Baleanu Caputo derivative, AIMS Math., 2022, 7(9), 17252–17268. doi: 10.3934/math.2022950 |
[6] | R. Chawla, K. Deswal and D. Kumar, A new numerical formulation for the generalized time-fractional Benjamin Bona Mohany Burgers' equation, Int. J. Nonlinear Sci. Numer. Simul., 2022. DOI: 10.1515/ijnsns-2022-0209. |
[7] | C. Chen, H. Liu, X. Zheng and H. Wang, A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile/immobile advection-diffusion equations, Comput. Math. Appl., 2020, 79(9), 2771–2783. doi: 10.1016/j.camwa.2019.12.008 |
[8] | G. Gao, H. Zhan, S. Feng, B. Fu, Y. Ma and G. Huang, A new mobile-immobile model for reactive solute transport with scale-dependent dispersion, Water Resour. Res., 2010. DOI: 10.1029/2009WR008707. |
[9] | G. Gao and Z. Sun, A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys., 2011, 230(3), 586–595. doi: 10.1016/j.jcp.2010.10.007 |
[10] | W. Gao, B. Ghanbari and H. M. Baskonus, New numerical simulations for some real world problems with Atangana-Baleanu fractional derivative, Chaos Solitions Fractals, 2019, 128, 34–43. doi: 10.1016/j.chaos.2019.07.037 |
[11] | H. R. Ghehsareh, A. Zaghian and M. Raei, A local weak form meshless method to simulate a variable order time-fractional mobile-immobile transport model, Eng. Anal. Bound. Elem., 2018, 90, 63–75. doi: 10.1016/j.enganabound.2018.01.016 |
[12] | A. Golbabai, O. Nikan and T. Nikazad, Numerical investigation of the time fractional mobile-immobile advection-dispersion model arising from solute transport in porous media, Int. J. Appl. Comput. Math., 2019, 5, 1–22. doi: 10.1007/s40819-018-0585-8 |
[13] | C. A. Hall, On error bounds for spline interpolation, J. Approx. Theory, 1968, 1(2), 209–218. doi: 10.1016/0021-9045(68)90025-7 |
[14] | M. Hamid, M. Usman, R. U. Haq and W. Wang, A Chelyshkov polynomial based algorithm to analyze the transport dynamics and anomalous diffusion in fractional model, Physica A, 2020, 551, 124227. doi: 10.1016/j.physa.2020.124227 |
[15] | A. A. Hamou, E. H. Azroul, Z. Hammouch and A. L. Alaoui, A monotone iterative technique combined to finite element method for solving reaction-diffusion problems pertaining to non-integer derivative, Eng. Comput., 2022, DOI: 10.1007/s00366-022-01635-4. |
[16] | M. H. Heydari and A. Atangana, An optimization method based on the generalized Lucas polynomials for variable-order space-time fractional mobile-immobile advection-dispersion equation involving derivatives with non-singular kernels, Chaos Solitions Fractals, 2020, 132, 109588. doi: 10.1016/j.chaos.2019.109588 |
[17] | A. S. V. Kanth and S. Deepika, Application and analysis of spline approximation for time fractional mobile-immobile advection-dispersion equation, Numer. Methods Partial Differ. Equ., 2018, 34(5), 1799–1819. doi: 10.1002/num.22266 |
[18] | A. S. V. Kanth and N. Garg, A numerical approach for a class of time-fractional reaction-diffusion equation through exponential B-spline method, Comput. Appl. Math., 2020, 39, 1–24. doi: 10.1007/s40314-019-0964-8 |
[19] | A. Kumar, A. Bhardwaj and B. V. R. Kumar, A meshless local collocation method for time fractional diffusion wave equation, Comput. Math. Appl., 2019, 78(6), 1851–1861. doi: 10.1016/j.camwa.2019.03.027 |
[20] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Publishers BV, Amsterdam, 2006. |
[21] | X. Li, Z. Wen, Q. Zhu and H. Jakada, A mobile-immobile model for reactive solute transport in a radial two-zone confined aquifer, J. Hydrol., 2020, 580, 124347. doi: 10.1016/j.jhydrol.2019.124347 |
[22] | F. Liu, P. Zhuang, I. Turner, K. Burrage and V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model., 2014, 38(15–16), 3871–3878. doi: 10.1016/j.apm.2013.10.007 |
[23] | Y. Liu, M. Zhang, H. Li and J. Li, High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation, Comput. Math. Appl., 2017, 73(6), 1298–1314. doi: 10.1016/j.camwa.2016.08.015 |
[24] | Z. Liu and X. Li, A Crank-Nicolson difference scheme for the time variable fractional mobile-immobile advection-dispersion equation, J. Appl. Math. Comput., 2018, 56(1–2), 391–410. doi: 10.1007/s12190-016-1079-7 |
[25] | Z. Liu, X. Li and X. Zhang, A fast high-order compact difference method for the fractal mobile/immobile transport equation, Int. J. Appl. Comput. Math., 2020, 97(9), 1860–1883. |
[26] | B. Maayah, O. A. Arqub, S. Alnabulsi and H. Alsulami, Numerical solutions and geometric attractors of a fractional model of the cancer-immune based on the Atangana-Baleanu-Caputo derivative and the reproducing kernel scheme, Chinese J. Phys., 2022, 80, 463–483. doi: 10.1016/j.cjph.2022.10.002 |
[27] | P. Perdikaris and G. E. Karniadakis, Fractional-order viscoelasticity in one-dimensional blood flow models, Ann. Biomed. Eng., 2014, 42, 1012–1023. doi: 10.1007/s10439-014-0970-3 |
[28] | I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. |
[29] | S. S. Ray, A novel wavelets operational matrix method for the time variable-order fractional mobile-immobile advection-dispersion model, Eng. Comput., 2021. DOI: 10.1007/s00366-021-01405-8. |
[30] | K. Sadri and H. Aminikhah, An efficient numerical method for solving a class of variable-order fractional mobile-immobile advection-dispersion equations and its convergence analysis, Chaos Solitions Fractals, 2021, 146, 110896. doi: 10.1016/j.chaos.2021.110896 |
[31] | R. Schumer, D. A. Benson, M. M. Meerschaert and B. Baeumer, Fractal mobile/immobile solute transport, Water Resour. Res., 2003, 39(10), 1296. |
[32] | M. Saffarian and A. Mohebbi, An efficient numerical method for the solution of 2D variable order time fractional mobile-immobile advection-dispersion model, Math. Meth. Appl. Sci., 2021, 44(7), 5908–5929. doi: 10.1002/mma.7158 |
[33] | M. Shafiq, M. Abbas, K. M. Abualnaja, A. Majeed and T. Nazir, An efficient technique based on cubic B-spline functions for solving time-fractional advection diffusion equation involving Atangana-Baleanu derivative, Eng. Comput., 2021. DOI: 10.1007/s00366-021-01490-9. |
[34] | F. Song and C. Xu, Spectral direction splitting methods for two-dimensional space fractional diffusion equations, J. Comput. Phys., 2015, 299, 196–214. doi: 10.1016/j.jcp.2015.07.011 |
[35] | X. Yang, H. Zhang and Q. tang, A spline collocation method for a fractional mobile-immobile equation with variable coefficients, Comput. Appl. Math., 2020. DOI:10.1007/s40314-019-1013-3. |
[36] | M. Zhang, Y. Liu and H. Li, High-order local discontinuous Galerkin method for a fractal mobile/immobile transport equation with the Caputo-Fabrizio fractional derivative, Numer. Methods Partial Differ. Equ., 2019, 35(4), 1588–1612. doi: 10.1002/num.22366 |
[37] | Y. Zhao, W. Bu, J. Huang, D. Liu and Y. Tang, Finite element method for two-dimensional space-fractional advection-dispersion equations, Appl. Math. Comput., 2015, 257, 553–565. |
Plots depicting the behavior of numerical solution at
Line plots of the exact and numerical solutions for Example 6.1 at
Error plot for
Plots depicting the behavior of numerical solution at
Line plots of the exact and numerical solution for Example 6.2 for
Error plot for