Citation: | Hong-Ping Yin, Xi-Min Liu, Jing-Yu Wang, Feng Qi. SEVERAL NEW INTEGRAL INEQUALITIES OF THE SIMPSON TYPE FOR $(\alpha, s, m)$-CONVEX FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2896-2905. doi: 10.11948/20230047 |
In the paper, the authors present some integral inequalities of the Simpson type for functions whose derivatives are $ (\alpha, s, m) $-convex.
[1] |
M. Alomari, M. Darus and S. S. Dragomir, New inequalities of Simpson's type for $s$-convex functions with applications, RGMIA Res. Rep. Coll., 2010, 12(4), 9–18.
$s$-convex functions with applications" target="_blank">Google Scholar |
[2] |
S.-P. Bai, F. Qi and S.-H. Wang, Some new integral inequalities of Hermite–Hadamard type for $(\alpha,m;P)$-convex functions on co-ordinates, J. Appl. Anal. Comput., 2016, 6(1), 171–178.
$(\alpha,m;P)$-convex functions on co-ordinates" target="_blank">Google Scholar |
[3] |
L. Chun and F. Qi, Inequalities of Simpson type for functions whose third derivatives are extended $s$-convex functions and applications to means, J. Comput. Anal. Appl., 2015, 19(3), 555–569.
$s$-convex functions and applications to means" target="_blank">Google Scholar |
[4] | S. S. Dragomir, R. P. Agarwal and P. Cerone, On Simpson's inequality and applications, J. Inequal. Appl., 2000, 5(6), 533–579. |
[5] |
S. S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for $s$-convex functions in the second sense, Demonstratio Math., 1999, 32(4), 687–696.
$s$-convex functions in the second sense" target="_blank">Google Scholar |
[6] |
N. Eftekhari, Some remarks on $(s,m)$-convexity in the second sense, J. Math. Inequal., 2014, 8(3), 489–495.
$(s,m)$-convexity in the second sense" target="_blank">Google Scholar |
[7] | G. Gulshan, R. Hussain and H. Budak, A new generalization of $q$-Hermite–Hadamard type integral inequalities for $p$, ($p-s$) and modified ($p-s$)-convex functions, Fract. Differ. Calc., 2022, 12(2), 147–158. |
[8] |
C.-Y. He, A. Wan and B.-N. Guo, Hermite–Hadamard type inequalities for harmonic-arithmetic extended $(s_1,m_1)$-$(s_2,m_2)$ coordinated convex functions, AIMS Math., 2023, 8(7), 17027–17037. doi: 10.3934/math.2023869
CrossRef $(s_1,m_1)$- |
[9] |
C.-Y. He, B.-Y. Xi and B.-N. Guo, Inequalities of Hermite–Hadamard type for extended harmonically $(s,m)$-convex functions, Miskolc Math. Notes, 2021, 22(1), 245–258. doi: 10.18514/MMN.2021.3080
CrossRef $(s,m)$-convex functions" target="_blank">Google Scholar |
[10] |
H. Hudzik and L. Maligranda, Some remarks on $s$-convex functions, Aequationes Math., 1994, 48(1), 100–111. doi: 10.1007/BF01837981
CrossRef $s$-convex functions" target="_blank">Google Scholar |
[11] |
J. Hua, B.-Y. Xi and F. Qi, Some new inequalities of Simpson type for strongly $s$-convex functions, Afr. Mat., 2015, 26(5–6), 741–752. doi: 10.1007/s13370-014-0242-2
CrossRef $s$-convex functions" target="_blank">Google Scholar |
[12] | S. Jin, A. Wan and B.-N. Guo, Some new integral inequalities of the Simpson type for MT-convex functions, Adv. Theory Nonlinear Anal. Appl., 2022, 6(2), 168–172. |
[13] |
M. B. Khan, G. Santos-García, H. Budak, S. Treanţǎ and M. S. Soliman, Some new versions of Jensen, Schur and Hermite–Hadamard type inequalities for $(p,\mathcal{F})$-convex fuzzy-interval-valued functions, AIMS Math., 2023, 8(3), 7437–7470. doi: 10.3934/math.2023374
CrossRef $(p,\mathcal{F})$-convex fuzzy-interval-valued functions" target="_blank">Google Scholar |
[14] | Y. Li, X.-M. Gu and J. Zhao, The weighted arithmetic mean–geometric mean inequality is equivalent to the Hölder inequality, Symmetry, 2018, 10(9), 5. |
[15] | Z. Liu, An inequality of Simpson type, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2005, 461(2059), 2155–2158. |
[16] | V. G. Miheşan, A generalization of the convexity, Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, 1993. (Romania) |
[17] | M. E. Omaba, Generalized fractional inequalities of the Hermite-Hadamard type via new Katugampola generalized fractional integrals, Carpathian Math. Publ., 2022, 14(2), 475–484. doi: 10.15330/cmp.14.2.475-484 |
[18] |
F. Qi and B.-Y. Xi, Some integral inequalities of Simpson type for GA-$\varepsilon$-convex functions, Georgian Math. J., 2013, 20(4), 775–788.
$\varepsilon$-convex functions" target="_blank">Google Scholar |
[19] |
M. Z. Sarikaya, E. Set and M. E. Özdemir, On new inequalities of Simpson's type for $s$-convex functions, Comput. Math. Appl., 2010, 60(8), 2191–2199. doi: 10.1016/j.camwa.2010.07.033
CrossRef $s$-convex functions" target="_blank">Google Scholar |
[20] |
Y. Shuang, Y. Wang and F. Qi, Integral inequalities of Simpson's type for $(\alpha,m)$-convex functions, J. Nonlinear Sci. Appl., 2016, 9(12), 6364–6370. doi: 10.22436/jnsa.009.12.36
CrossRef $(\alpha,m)$-convex functions" target="_blank">Google Scholar |
[21] | S.-H. Wang and X.-R. Hai, Hermite–Hadamard type inequalities for Katugampola fractional integrals, J. Appl. Anal. Comput., 2023, 13(4): 1650–1667. |
[22] |
Y. Wang, X.-M. Liu and B.-N. Guo, Several integral inequalities of the Hermite–Hadamard type for $s$-$(\beta,F)$-convex functions, ScienceAsia, 2023, 49(2), 200–204.
$s$- |
[23] | Y. Wang, S.-H. Wang and F. Qi, Simpson type integral inequalities in which the power of the absolute value of the first derivative of the integrand is $s$-preinvex, Facta Univ. Ser. Math. Inform., 2013, 28(2), 151–159. |
[24] |
J.-Y. Wang, H.-P. Yin, W.-L. Sun and B.-N. Guo, Hermite–Hadamard's integral inequalities of $(\alpha,s)$-GA- and $(\alpha,s, m)$-GA-convex functions, Axioms, 2022, 11(11), 12.
$(\alpha,s)$-GA- and |
[25] |
B.-Y. Xi, R.-F. Bai and F. Qi, Hermite–Hadamard type inequalities for the $m$- and $(\alpha,m)$-geometrically convex functions, Aequationes Math., 2012, 84(3), 261–269.
$m$- and |
[26] |
B.-Y. Xi, D.-D. Gao and F. Qi, Integral inequalities of Hermite–Hadamard type for $(\alpha,s)$-convex and $(\alpha,s,m)$-convex functions, Ital. J. Pure Appl. Math., 2020, 44(1), 499–510.
$(\alpha,s)$-convex and |
[27] | B.-Y. Xi and F. Qi, Hermite–Hadamard type inequalities for geometrically $r$-convex functions, Studia Sci. Math. Hungar., 2014, 51(4), 530–546. |
[28] |
B.-Y. Xi and F. Qi, Inequalities of Hermite–Hadamard type for extended $s$-convex functions and applications to means, J. Nonlinear Convex Anal., 2015, 16(5), 873–890.
$s$-convex functions and applications to means" target="_blank">Google Scholar |
[29] | B.-Y. Xi and F. Qi, Integral inequalities of Simpson type for logarithmically convex functions, Adv. Stud. Contemp. Math. (Kyungshang), 2013, 23(4), 559–566. |
[30] |
B.-Y. Xi, F. Qi and T. Zhang, Some inequalities of Hermite–Hadamard type for $m$-harmonic-arithmetically convex functions, ScienceAsia, 2015, 41(5), 357–361.
$m$-harmonic-arithmetically convex functions" target="_blank">Google Scholar |
[31] | B.-Y. Xi, Y. Wang and F. Qi, Some integral inequalities of Hermite–Hadamard type for extended $(s,m)$-convex functions, Transylv. J. Math. Mech., 2013, 5(1), 69–84. |
[32] | J. Zhang, Z.-L. Pei and F. Qi, Integral inequalities of Simpson's type for strongly extended $(s,m)$-convex functions, J. Comput. Anal. Appl., 2019, 26(3), 499–508. |
[33] |
J. Zhang, Z.-L. Pei, G.-C. Xu, X.-H. Zou and F. Qi, Integral inequalities of extended Simpson type for $(\alpha,m)-\varepsilon $-convex functions, J. Nonlinear Sci. Appl., 2017, 10(1), 122–129.
$(\alpha,m)-\varepsilon $-convex functions" target="_blank">Google Scholar |