Citation: | Guanghui Lu, Miaomiao Wang. BILINEAR $\Theta$-TYPE CALDERÓN-ZYGMUND OPERATOR AND ITS COMMUTATOR ON PRODUCT NON-HOMOGENEOUS GENERALIZED MORREY SPACES[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2922-2942. doi: 10.11948/20230054 |
Let $ (\mathcal{X}, d, \mu) $ be a non-homogeneous metric measure space satisfying both the geometrically doubling and upper doubling conditions in the sense of Hytönen. In this setting, the authors first introduce generalized Morrey spaces $ \mathcal{L}^{p, \varphi, \kappa}(\mu) $ and generalized weak Morrey spaces $ W\mathcal{L}^{p, \varphi, \kappa}(\mu) $ for $ p\in[1, $ $ \infty) $; second, under assumption that the dominating function $ \lambda $ and $ (\varphi_{1}, \varphi_{2}, \varphi) $ satisfy certain conditions, the authors prove that bilinear $ \theta $-type Calderón-Zygmund operators $ \widetilde{T} $ are bounded from product of spaces $ \mathcal{L}^{p_{1}, \varphi_{1}, \kappa}(\mu)\times \mathcal{L}^{p_{2}, \varphi_{2}, \kappa}(\mu) $ into spaces $ \mathcal{L}^{p, \varphi, \kappa}(\mu) $, and also bounded from product of spaces $ \mathcal{L}^{p_{1}, \varphi_{1}, \kappa}(\mu)\times \mathcal{L}^{p_{2}, \varphi_{2}, \kappa}(\mu) $ into spaces $ W\mathcal{L}^{p, \varphi, \kappa}(\mu) $, where $ \frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}} $ for $ 1<p_{1}, p_{2}<\infty $; finally, the boundedness of the commutator $ \widetilde{T}_{b_{1}, b_{2}} $ formed by $ b_{1}, b_{2}\in\mathrm{RBMO}(\mu) $ and $ \widetilde{T} $ on spaces $ \mathcal{L}^{p, \varphi, \kappa}(\mu) $ and on spaces $ W\mathcal{L}^{p, \varphi, \kappa}(\mu) $ is obtained.
[1] | Y. Cao and J. Zhou, Morrey spaces for nonhomogeneous metric measure spaces, Abstr. Appl. Anal., 2013, 2013(1), 1–8. |
[2] | R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, (French) Étude de certaines intšŠgrales singulières. Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1971, 242. |
[3] | R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 1977, 83(4), 569–645. doi: 10.1090/S0002-9904-1977-14325-5 |
[4] | X. Fu, D. Yang and W. Yuan, Generalized fractional integrals and their commutators over non-homogeneous metric measure spaces, Taiwanese J. Math., 2014, 18(2), 509–557. |
[5] | X. Fu, D. Yang and W. Yuan, Boundedness on Orlicz spaces for multilinear commutators of Calderón-Zygmund operators on non-homogeneous spaces, Taiwanese J. Math., 2012, 16(6), 2203–2238. |
[6] |
X. Fu, D. Yang and D. Yang, The molecular characterization of the Hardy space $H^{1}$ on non-homogeneous metric measure spaces and its application, J. Math. Anal. Appl., 2014, 410(2), 1028–1042. doi: 10.1016/j.jmaa.2013.09.021
CrossRef $H^{1}$ on non-homogeneous metric measure spaces and its application" target="_blank">Google Scholar |
[7] | V. S. Guliyev, Commutators of multilinear Calderón-Zygmund operators with kernels of Dini's type on generalized weighted Morrey spaces and applications, Positivity, 2023, 27(1), 1–29. doi: 10.1007/s11117-022-00954-6 |
[8] | V. S. Guliyev, Calderón-Zygmund operators with kernels of Dini's type on generalized weighted variable exponent Morrey spaces, Positivity, 2021, 25(5), 1771–1788. doi: 10.1007/s11117-021-00846-1 |
[9] | V. S. Guliyev, Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl., 2009, 1–20. |
[10] | V. S. Guliyev and A. F. Ismayilova, Calderón-Zygmund operators with kernels of Dini's type and their multilinear commutators on generalized weighted Morrey spaces, TWMS J. Pure Appl. Math., 2021, 12(2), 265–277. |
[11] | V. S. Guliyev and Y. Sawano, Linear and sublinear operators on generalized Morrey spaces with non-doubling measures, Publ. Math. Debrecen, 2013, 83(3), 303–327. doi: 10.5486/PMD.2013.5508 |
[12] |
T. Hytönen, A framework for non-homogeneous analysis on metric spaces, and the $\mathrm{RBMO}$ space of Tolsa, Publ. Math., 2010, 54(2), 485–504.
$\mathrm{RBMO}$ space of Tolsa" target="_blank">Google Scholar |
[13] | T. Hytönen, S. Liu, D. Yang and D. Yang, Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces, Canad. J. Math., 2012, 64(1), 892–923. |
[14] |
T. Hytönen, D. Yang and D. Yang, The Hardy space $H^{1}$ on non-homogeneous metric spaces, Math. Proc. Cambridge Philos. Soc., 2012, 153(1), 9–31. doi: 10.1017/S0305004111000776
CrossRef $H^{1}$ on non-homogeneous metric spaces" target="_blank">Google Scholar |
[15] | V. Kokilashvili and A. Meskhi, Boundedness of integral operators in generalized weighted grand Lebesgue spaces with non-doubling measures, Mediterr. J. Math., 2021, 18(2), 1–16. |
[16] |
H. Lin, Z. Liu and C. Wang, The John-Nirenberg inequality for the regularized $\mathrm{BLO}$ space on non-homogeneous metric measure spaces, Canad. Math. Bull., 2020, 63(3), 643–654. doi: 10.4153/S0008439519000729
CrossRef $\mathrm{BLO}$ space on non-homogeneous metric measure spaces" target="_blank">Google Scholar |
[17] | H. Lin, S. Wu and D. Yang, Boundedness of certain commutators over non-homogeneous metric measure spaces, Anal. Math. Phys., 2017, 7(2), 187–218. doi: 10.1007/s13324-016-0136-6 |
[18] | G. Lu, Some estimates for commutators of Littlewood-Paley $g$-functions, Open Math., 2021, 19(1), 888–897. doi: 10.1515/math-2021-0051 |
[19] |
G. Lu, Bilinear $\theta$-type Calderón-Zygmund operator and its commutator on non-homogeneous weighted Morrey spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 2021, 115(1), 1–15. doi: 10.1007/s13398-020-00944-x
CrossRef $\theta$-type Calderón-Zygmund operator and its commutator on non-homogeneous weighted Morrey spaces" target="_blank">Google Scholar |
[20] |
G. Lu, Weighted estimates for $\theta$-type Calderón-Zygmund operator and its commutator on metric measure spaces, Complex Var. Elliptic Equ., 2022, 67(9), 2061–2075. doi: 10.1080/17476933.2021.1913731
CrossRef $\theta$-type Calderón-Zygmund operator and its commutator on metric measure spaces" target="_blank">Google Scholar |
[21] | G. Lu, Fractional type Marcinkiewicz integral and its commutator on nonhomogeneous spaces, Nagoya Math. J., 2022, 48, 801–822. |
[22] | G. Lu and S. Tao, Generalized Morrey spaces over nonhomogeneous metric measure spaces, J. Aust. Math. Soc., 2017, 103(2), 268–278. doi: 10.1017/S1446788716000483 |
[23] | G. Lu and S. Tao, Fractional type Marcinkiewicz commutators over non-homogeneous metric measure spaces, Analysis Math., 2019, 45(1), 87–110. doi: 10.1007/s10476-018-0608-z |
[24] |
G. Lu and S. Tao, Generalized homogeneous Littlewood-Paley $g$-function on some function spaces, Bull. Malays. Math. Sci. Soc., 2021, 44(1), 17–34. doi: 10.1007/s40840-020-00934-7
CrossRef $g$-function on some function spaces" target="_blank">Google Scholar |
[25] | G. Lu and S. Tao, Bilinear $\theta$-type generalized fractional integral operator and its commutator on some non-homogeneous spaces, Bull. Sci. Math., 2022, 174, 1–32. |
[26] |
C. Ri and Z. Zhang, Boundedness of commutators of $\theta$-type Calderón-Zygmund operators on non-homogeneous metric measure spaces, Chinese Ann. Math. Ser. B., 2019, 40(4), 585–598. doi: 10.1007/s11401-019-0153-5
CrossRef $\theta$-type Calderón-Zygmund operators on non-homogeneous metric measure spaces" target="_blank">Google Scholar |
[27] | Y. Sawano, Generalized Morrey spaces for non-doubling measures, NoDEA Nonlinear Differential Equations Appl., 2008, 15(4–5), 413–425. doi: 10.1007/s00030-008-6032-5 |
[28] | Y. Sawano and H. Tanaka, Morrey spaces for non-doubling measures, Acta Math. Sin., 2005, 21(6), 1535–1544. doi: 10.1007/s10114-005-0660-z |
[29] |
X. Tolsa, Littlewood-Paley theory and the $T(1)$ theorem with non-doubling measures, Adv. Math., 2001, 164(1), 57–116. doi: 10.1006/aima.2001.2011
CrossRef $T(1)$ theorem with non-doubling measures" target="_blank">Google Scholar |
[30] | X. Tolsa, The space $H.{1}$ for nondoubling measures in terms of a grand maximal operator, Trans. Amer. Math. Soc., 2003, 355(1), 315–348. |
[31] | H. Wang and R. Xie, Boundedness of strongly singular integral operators on non-homogenous metric measure spaces, Anal. Math., 2022, 48(4), 1231–1255. doi: 10.1007/s10476-022-0177-z |
[32] | R. Xie, L. Shu and A. Sun, Boundedness for commutators of bilinear $\theta$-type Calderón-Zygmund operators on non-homogeneous metric measure spaces, J. Funct. Spaces, 2017, 2017, 1–10. |
[33] | K. Yabuta, Generalization of Calderón-Zygmund operators, Studia Math., 1985, 82(1), 17–31. |
[34] | P. Zhang and J. Sun, Commutators of multilinear Calderón-Zygmund operators with kernels of Dini's type and applications, J. Math. Inequal., 2019, 13(4), 1071–1093. |
[35] | Y. Zhao, H. Lin and Y. Meng, Weighted estimates for iterated commutators of multilinear Calderón-Zygmund operators on non-homogeneous metric measure spaces, Sci. China Math., 2021, 64(3), 519–546. |
[36] | Y. Zhao and J. Zhou, New weighted norm inequalities for multilinear Calderón-Zygmund operators with kernels of Dini's type and their commutators, J. Inequal. Appl., 2021, 29, 1–23. |
[37] |
T. Zheng, X. Tao and X. Wu, Bilinear Calderón-Zygmund operators of type $\omega(t)$ on non-homogeneous space, J. Inequal. Appl., 2014, 113, 1–18.
$\omega(t)$ on non-homogeneous space" target="_blank">Google Scholar |