2023 Volume 13 Issue 5
Article Contents

Mohammad Sababheh, Hamid Reza Moradi. NUMERICAL RADIUS OF KRONECKER PRODUCT OF MATRICES[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2943-2954. doi: 10.11948/20230064
Citation: Mohammad Sababheh, Hamid Reza Moradi. NUMERICAL RADIUS OF KRONECKER PRODUCT OF MATRICES[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2943-2954. doi: 10.11948/20230064

NUMERICAL RADIUS OF KRONECKER PRODUCT OF MATRICES

  • In this article, we present several bounds for the numerical radius of the Kronecker product of matrices to enrich our knowledge about this topic.

    MSC: 47A12, 47A30, 15A60, 47A80, 15A45, 15A69
  • 加载中
  • [1] E. Alizadeh and A. Farokhinia, Some refinements of numerical radius inequalities for Hilbert space operators, Jordan J. Math. Stat., 2022, 15(1), 55–63.

    Google Scholar

    [2] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.

    Google Scholar

    [3] M. L. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz, (Italian) Rend Sem Mat Univ E Politech Torino., 1974, 31 (1971/73), 405–409.

    Google Scholar

    [4] S. S. Dragomir, Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J. Math., 2009, 5(18), 269–278.

    Google Scholar

    [5] M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II, Studia Math., 2007, 182(2), 133–140. doi: 10.4064/sm182-2-3

    CrossRef Google Scholar

    [6] T. Furuta, Invitation to Linear Operators, Taylor and Francis, London, 2001.

    Google Scholar

    [7] H. Gau, K. Wang, and P. Wu, Numerical radii for tensor products of operators, Integr. Equ. Oper. Theory, 2014, 78, 375–382. doi: 10.1007/s00020-013-2098-5

    CrossRef Google Scholar

    [8] D. Gueridi and F. Kittaneh, Inequalities for the Kronecker product of matrices, Ann. Funct. Anal., 2022, 13, 50. https://doi.org/10.1007/s43034-022-00191-8 doi: 10.1007/s43034-022-00191-8

    CrossRef Google Scholar

    [9] Z. Heydarbeygi, M. Sababheh and H. R. Moradi, A convex treatment of numerical radius inequalities, Czechoslov. Math. J., 2022, 72(147), 601–614.

    Google Scholar

    [10] H. Jafarmanesh and M. Khosravi, Sharp operator mean inequalities of the numerical radii, Oper. Matrices, 2021, 15(2), 423–433.

    Google Scholar

    [11] Y. Ke, Finite iterative algorithm for the complex generalized Sylvester tensor equations, J. Appl. Anal. Comput., 2020, 10(3), 972–985.

    Google Scholar

    [12] F. Kittaneh, Norm inequalities for certain operator sums, J. Funct. Anal., 1997, 103, 337–348.

    Google Scholar

    [13] F. Kittaneh, Norm inequalities for sums and differences of positive operators, Linear Algebra Appl., 2004, 383, 85–91. doi: 10.1016/j.laa.2003.11.023

    CrossRef Google Scholar

    [14] F. Kittaneh, Notes on some inequalities for Hilbert Space operators, Publ. Res. Inst. Math. Sci., 1988, 24(2), 283–93. doi: 10.2977/prims/1195175202

    CrossRef Google Scholar

    [15] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 2005, 168(1), 73–80. doi: 10.4064/sm168-1-5

    CrossRef Google Scholar

    [16] F. Kittaneh and H. R. Moradi, Cauchy-Schwarz type inequalities and applications to numerical radius inequalities, Math. Inequal. Appl., 2020, 23(3), 1117–1125.

    Google Scholar

    [17] G. Luo, M. Yang, X. Ma, Y. Zhang and S. He, Orthogonal arrays obtained by array subtraction, J. Appl. Anal. Comput., 2021, 11(6), 2815–2839.

    Google Scholar

    [18] F. P. Najafabadi and H. R. Moradi, Advanced refinements of numerical radius inequalities, Int. J. Math. Mod. Comp., 2021, 11(4), 1–10.

    Google Scholar

    [19] M. E. Omidvar and H. R. Moradi, New estimates for the numerical radius of Hilbert space operators, Linear Multilinear Algebra, 2021, 69(5), 946–956. doi: 10.1080/03081087.2020.1810200

    CrossRef Google Scholar

    [20] M. E. Omidvar and H. R. Moradi, Better bounds on the numerical radii of Hilbert space operators, Linear Algebra Appl., 2020, 604, 265–277. doi: 10.1016/j.laa.2020.06.021

    CrossRef Google Scholar

    [21] M. Sababheh, H. R. Moradi and I. Gumus, Some new operator inequalities, Oper. Matrices, 2020, 14(1), 105–115.

    Google Scholar

    [22] M. Sattari, M. S. Moslehian and T. Yamazaki, Some generalized numerical radius inequalities for Hilbert space operators, Linear Algebra Appl., 2015, 470, 216–227. doi: 10.1016/j.laa.2014.08.003

    CrossRef Google Scholar

    [23] A. Sheikhhosseini, M. Khosravi and M. Sababheh, The weighted numerical radius, Ann. Funct. Anal., 2022, 13, 3. https://doi.org/10.1007/s43034-021-00148-3. doi: 10.1007/s43034-021-00148-3

    CrossRef Google Scholar

    [24] S. Sheybani, M. Sababheh and H. R. Moradi, Weighted inequalities for the numerical radius, Vietnam J. Math., 2023, 51(2), 363–377. doi: 10.1007/s10013-021-00533-4

    CrossRef Google Scholar

    [25] J. Wang, Y. Zheng and Z. Jiang, Norm qualities and inequalities for tridiagonal perturbed Toeplitz operator matrices, J. Appl. Anal. Comput., 2023, 13(2), 671–683.

    Google Scholar

    [26] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math., 2007, 178(1), 83–89. doi: 10.4064/sm178-1-5

    CrossRef Google Scholar

    [27] G. Zhao, H. Li, P. Duan and F. Alsaadi, Survey on applications of semi-tensor product methods in networked evolutionary games, J. Appl. Anal. Comput., 2020, 10(1), 32–54.

    Google Scholar

Article Metrics

Article views(1737) PDF downloads(481) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint