2023 Volume 13 Issue 6
Article Contents

Yu Cheng, Baoyuan Shan, Zhanbing Bai. EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR DOUBLE PHASE PROBLEM WITH INDEFINITE SINGULAR TERMS[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3403-3421. doi: 10.11948/20230070
Citation: Yu Cheng, Baoyuan Shan, Zhanbing Bai. EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR DOUBLE PHASE PROBLEM WITH INDEFINITE SINGULAR TERMS[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3403-3421. doi: 10.11948/20230070

EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR DOUBLE PHASE PROBLEM WITH INDEFINITE SINGULAR TERMS

  • Author Bio: Email: chengyu9660@163.com(Y. Cheng); Email: xiaoxvyuan@outlook.com(B. Shan)
  • Corresponding author: Email: zhanbingbai@163.com(Z. Bai)
  • Fund Project: The authors were supported by Natural Science Foundation of China (No. 12371173), Natural Science Foundation of Shandong Province (No. ZR2021MA064), and the Taishan Scholar Project
  • In this article, the solvability of a class of periodic boundary value problems with double phase operators and mixed singular terms is considered. By applying the continuation theorem of Manásevich-Mawhin and techniques of a prior estimates, some existence results of positive solutions are obtained. Several numerical examples are given to illustrate the main results.

    MSC: 34B16, 34C25
  • 加载中
  • [1] S. Biagi, F. Esposito and E. Vecchi, Symmetry and monotonicity of singular solutions of double phase problems, J. Differ. Eqs., 2021, 280(15), 435–463. DOI: 10.1016/j.jde.2021.01.029.

    CrossRef Google Scholar

    [2] F. Colasuonno and M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura. Appl., 2016(4), 1917–1959. DOI: 10.1007/s10231-015-0542-7.

    CrossRef Google Scholar

    [3] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin/New York, 1985.

    Google Scholar

    [4] A. Fiscella and A. Pinamonti, Existence and multiplicity results for Kirchhoff-type problems on a double-phase setting, Mediterr. J. Math., 2023, 20(33). DOI: 10.1007/s00009-022-02245-6.

    CrossRef Google Scholar

    [5] A. Fonda, Periodic solutions for a conservative system of differential equations with a singularity of repulsive type, Nonlinear. Anal., 1995(24), 667–676. DOI: 10.1016/0362-546X(94)00118-2.

    CrossRef Google Scholar

    [6] R. Hakl and P. J. Torres, On periodic solutions of second-order differential equations with attractive-repulsive singularities, J. Differ. Eqs., 2010(248), 111–126. DOI: 10.1016/j.jde.2009.07.008.

    CrossRef Google Scholar

    [7] R. Hakl, P. J. Torres and M. Zamora, Periodic solutions of singular second order differential equations: Upper and lower functions, Nonlinear Anal., 2011(74), 7078–7093. DOI: 10.1016/j.na.2011.07.029.

    CrossRef Google Scholar

    [8] R. Hakl and M. Zamora, Periodic solutions to second-order indefinite singular equations, J. Differ. Eqs., 2017(263), 451–469. DOI: 10.1016/j.jde.2017.02.044.

    CrossRef Google Scholar

    [9] R. Hakl and M. Zamora, Existence and multiplicity of periodic solutions to indefinite singular equations having a nonmonotone term with two singularities, Adv. Nonlinear Stud., 2010(19), 317–322. DOI: 10.1515/ans-2018-2018.

    CrossRef Google Scholar

    [10] X. Han and H. Yang, Existence of periodic solutions for two classes of second order p-Laplacian differential equations, J. Appl. Anal. Comput., 2023(13), 81–94. DOI: 10.11948/20210310.

    CrossRef Google Scholar

    [11] P. Jebelean and J. Mawhin, Periodic solutions of singular nonlinear perturbations of the ordinary p-Laplacian, Adv. Nonlinear Stud., 2002, 9(202), 299–312. DOI: 10.1515/ans-2002-0307.

    CrossRef Google Scholar

    [12] A. C. Lazer and S. Solimini, On periodic solutions of nonlinear differential equations with singularities, P. Am. Math. Soc., 1987(99), 109–114. DOI: 10.1090/S0002-9939-1987-0866438-7.

    CrossRef Google Scholar

    [13] J. Liu, Z. Cheng and Y. Wang, Positive periodic solution for second-order nonlinear differential equation with singularity of attractive type, J. Appl. Anal. Comput., 2020(19), 1636–1650. DOI: 10.11948/20190305.

    CrossRef Google Scholar

    [14] P. Liu, Y. Fan and L. Wang, Existence of positive solutions for a nonlinear second order periodic boundary value problem, Journal of Nonlinear Modeling and Analysis, 2020(2), 513–524. DOI: 10.12150/jnma.2020.5131993.

    CrossRef Google Scholar

    [15] W. Liu and G. Dai, Existence and multiplicity results for double phase problem, J. Differ. Eqs., 2018, 265(9), 4311–4334. DOI: 10.1016/j.jde.2018.06.006.

    CrossRef Google Scholar

    [16] W. Liu and G. Dai, Three ground state solutions for double phase problem, J. Math. Phys., 2018(59), 121503. DOI: 10.1063/1.5055300.

    CrossRef Google Scholar

    [17] S. Lu, Y. Guo and L. Chen, Periodic solutions for Liénard equation with an indefinite singularity, Nonlinear. Anal-Real., 2019(45), 542–556. DOI: 10.1016/j.nonrwa.2018.07.024.

    CrossRef Google Scholar

    [18] S. Lu and X. Yu, Periodic solutions for second order differential equations with indefinite singularities, Adv. Nonlinear Anal., 2020(9), 994–1007. DOI: 10.1515/anona-2020-0037.

    CrossRef Google Scholar

    [19] R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Differ. Eqs., 1998(145), 367–393. DOI: 10.1006/jdeq.1998.3425.

    CrossRef Google Scholar

    [20] M. Nagumo, On the Periodic Solution of an Ordinary Differential Equation of Second Order, Zenkoku Shijou Suugaku Danwakai., 1944, in Japanese. English translation in Mitio Nagumo Collected Papers, Sringer, Berlin, 1993.

    Google Scholar

    [21] K. Perera and M. Squassina, Existence results for double-phase problems via Morse theory, Commun. Contemp. Math., 2018, 20(2), 1750023, 14 pp. DOI: 10.1142/S0219199717500237.

    CrossRef Google Scholar

    [22] P. J. Torres, Mathematical Models with Singularities - A Zoo of Singular Creatures, Atlantis Press, Amsterdam, 2015.

    Google Scholar

    [23] M. Yoshihiro and S. Tetsu, Hardy-Sobolev inequalities in the unit ball for double phase functionals, J. Math. Anal. Appl., 2021(501), 124133. DOI: 10.1016/j.jmaa.2020.124133.

    CrossRef Google Scholar

    [24] V. V. Zhikov, Averaging of functional of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR, Ser. Mat., 1986(50), 675–710.

    Google Scholar

    [25] V. V. Zhikov, On Lavrentiev's phenomenon, Russ. J. Math. Phys., 1995(30), 249–269.

    Google Scholar

    [26] V. V. Zhikov, On some variational problems, Russ. J. Math. Phys., 1997(5), 105–116.

    Google Scholar

    [27] V. V. Zhikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994.

    Google Scholar

Article Metrics

Article views(1273) PDF downloads(355) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint