2023 Volume 13 Issue 6
Article Contents

Jin Wen, Chong-Wang Yue, Zhuan-Xia Liu, Donal O'Regan. A FRACTIONAL LANDWEBER ITERATION METHOD FOR SIMULTANEOUS INVERSION IN A TIME-FRACTIONAL DIFFUSION EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3374-3402. doi: 10.11948/20230051
Citation: Jin Wen, Chong-Wang Yue, Zhuan-Xia Liu, Donal O'Regan. A FRACTIONAL LANDWEBER ITERATION METHOD FOR SIMULTANEOUS INVERSION IN A TIME-FRACTIONAL DIFFUSION EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3374-3402. doi: 10.11948/20230051

A FRACTIONAL LANDWEBER ITERATION METHOD FOR SIMULTANEOUS INVERSION IN A TIME-FRACTIONAL DIFFUSION EQUATION

  • In the present paper, we study the problem to identify the space-dependent source term and initial value simultaneously for a time-fractional diffusion equation. This inverse problem is ill-posed, and we use the idea of decoupling to turn it into two operator equations based on the Fourier method. To solve the inverse problem, a fractional Landweber regularization method is proposed. Furthermore, we present convergence estimates between the exact solution and the regularized solution by using the a-priori and the a-posteriori parameter choice rules. In order to verify the accuracy and efficiency of the proposed method, several numerical examples are constructed.

    MSC: 41A28, 65N21, 35R11
  • 加载中
  • [1] O. P. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Fractional Order Calculus and its Applications, 2002, 145–155.

    Google Scholar

    [2] A. Babaei, Solving a time-fractional inverse heat conduction problem with an unknown nonlinear boundary condition, J. Math. Model., 2019, 7(1), 85–106.

    Google Scholar

    [3] B. Berkowitz, H. Scher and S. E. Silliman, Anomalous transport in laboratory-scale, heterogeneous porous media, Water Resources Research, 2000, 36(1), 149–158. doi: 10.1029/1999WR900295

    CrossRef Google Scholar

    [4] A. Chen and C. Li, Numerical solution of fractional diffusion-wave equation, Numer. Funct. Anal. Optim., 2016, 37(1), 19–39. doi: 10.1080/01630563.2015.1078815

    CrossRef Google Scholar

    [5] R. Courant and D. Hilbert, Methods of mathematical physics - vol. 1; vol. 2, New York Interscience Publication, 1953, 305(3–4), 121–132.

    Google Scholar

    [6] R. Du, W. R. Cao and Z. Z. Sun, A compact difference scheme for the fractional diffusion-wave equation, Appl. Math. Model., 2010, 34(10), 2998–3007. doi: 10.1016/j.apm.2010.01.008

    CrossRef Google Scholar

    [7] H. Egger and A. Neubauer, Preconditioning Landweber iteration in Hilbert scales, Numer. Math., 2005, 101(4), 643–662. doi: 10.1007/s00211-005-0622-5

    CrossRef Google Scholar

    [8] H. W. Engl, M. Hanke and A. Neubauer, Regularization of inverse problems, 375 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1996.

    Google Scholar

    [9] M. Giona, S. Cerbelli and H. E. Roman, Fractional Diffusion Equation and Relaxation in Complex Viscoelastic Materials, Physica A Statistical Mechanics and its Applications, 1992.

    Google Scholar

    [10] Y. Han, X. Xiong and X. Xue, A fractional Landweber method for solving backward time-fractional diffusion problem, Comput. Math. Appl., 2019, 78(1), 81–91.

    Google Scholar

    [11] Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles, Water Resources Research, 1998, 34(5), 1027–1034. doi: 10.1029/98WR00214

    CrossRef Google Scholar

    [12] L. N. Huynh, Y. Zhou, D. O'Regan and N. H. Tuan, Fractional Landweber method for an initial inverse problem for time-fractional wave equations, Appl. Anal., 2021, 100(4), 860–878. doi: 10.1080/00036811.2019.1622682

    CrossRef Google Scholar

    [13] H. Jiang, F. Liu, I. Turner and K. Burrage, Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain, Comput. Math. Appl., 2012, 64(10), 3377–3388.

    Google Scholar

    [14] M. Jiang and G. Wang, Convergence studies on iterative algorithms for image reconstruction, IEEE Transactions on Medical Imaging, 2003, 22(5), 569–579. doi: 10.1109/TMI.2003.812253

    CrossRef Google Scholar

    [15] B. T. Johansson and D. Lesnic, A procedure for determining a spacewise dependent heat source and the initial temperature, Applicable Analysis, 2008, 87(3), 265–276. doi: 10.1080/00036810701858193

    CrossRef Google Scholar

    [16] E. Klann and R. Ramlau, Regularization by fractional filter methods and data smoothing, Inverse Problems, 2008, 24(2), 025018, 26. doi: 10.1088/0266-5611/24/2/025018

    CrossRef Google Scholar

    [17] L. Landweber, An iteration formula for Fredholm integral equations of the first kind, Amer. J. Math., 1951, 73, 615–624. doi: 10.2307/2372313

    CrossRef Google Scholar

    [18] X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 2009, 47(3), 2108–2131. doi: 10.1137/080718942

    CrossRef Google Scholar

    [19] Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 2007, 225(2), 1533–1552. doi: 10.1016/j.jcp.2007.02.001

    CrossRef Google Scholar

    [20] A. K. Louis, Inverse und Schlecht Gestellte Probleme, Teubner Studienbücher Mathematik. [Teubner Mathematical Textbooks], B. G. Teubner, Stuttgart, 1989.

    Google Scholar

    [21] F. Mainardi, Fractional Diffusive Waves in Viscoelastic Solids, 1995.

    Google Scholar

    [22] R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A, 2000, 278(1–2), 107–125. doi: 10.1016/S0378-4371(99)00503-8

    CrossRef Google Scholar

    [23] A. Neubauer, On Landweber iteration for nonlinear ill-posed problems in Hilbert scales, Numer. Math., 2000, 85(2), 309–328. doi: 10.1007/s002110050487

    CrossRef Google Scholar

    [24] I. Podlubny, Fractional Differential Equations, 198 of Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA, 1999. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications.

    Google Scholar

    [25] C. Ren, X. Xu and S. Lu, Regularization by projection for a backward problem of the time-fractional diffusion equation, J. Inverse Ill-Posed Probl., 2014, 22(1), 121–139. doi: 10.1515/jip-2011-0021

    CrossRef Google Scholar

    [26] H. E. Roman and P. A. Alemany, Continuous-time random walks and the fractional diffusion equation, J. Phys. A, 1994, 27(10), 3407–3410. doi: 10.1088/0305-4470/27/10/017

    CrossRef Google Scholar

    [27] Z. Ruan, J. Z. Yang and X. Lu, Tikhonov regularisation method for simultaneous inversion of the source term and initial data in a time-fractional diffusion equation, East Asian J. Appl. Math., 2015, 5(3), 273–300. doi: 10.4208/eajam.310315.030715a

    CrossRef Google Scholar

    [28] Z. Ruan and S. Zhang, Simultaneous inversion of time-dependent source term and fractional order for a time-fractional diffusion equation, J. Comput. Appl. Math., 2020, 368, 112566, 15. doi: 10.1016/j.cam.2019.112566

    CrossRef Google Scholar

    [29] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 2011, 382(1), 426–447. doi: 10.1016/j.jmaa.2011.04.058

    CrossRef Google Scholar

    [30] I. M. Sokolov and J. Klafter, From diffusion to anomalous diffusion: a century after Einstein's Brownian motion, Chaos, 2005, 15(2), 026103, 7. doi: 10.1063/1.1860472

    CrossRef Google Scholar

    [31] L. L. Sun, Y. S. Li and Y. Zhang, Simultaneous inversion of the potential term and the fractional orders in a multi-term time-fractional diffusion equation, Inverse Problems, 2021, 37(5), Paper No. 055007, 26.

    Google Scholar

    [32] N. H. Tuan, L. N. Huynh, T. B. Ngoc and Y. Zhou, On a backward problem for nonlinear fractional diffusion equations, Appl. Math. Lett., 2019, 92, 76–84. doi: 10.1016/j.aml.2018.11.015

    CrossRef Google Scholar

    [33] G. M. Vainikko and A. Y. Veretennikov, Iteration Procedures in Ill-Posed Problems, Nauka, Moscow, 1986.

    Google Scholar

    [34] J. -G. Wang and T. Wei, An iterative method for backward time-fractional diffusion problem, Numer. Methods Partial Differential Equations, 2014, 30(6), 2029–2041. doi: 10.1002/num.21887

    CrossRef Google Scholar

    [35] J. Wen, Z. -X. Liu and S. -S. Wang, Conjugate gradient method for simultaneous identification of the source term and initial data in a time-fractional diffusion equation, Applied Mathematics in Science and Engineering, 2022, 30(1), 324–338. doi: 10.1080/27690911.2022.2075358

    CrossRef Google Scholar

    [36] J. Wen, Z. -X. Liu, C. -W. Yue and S. -J. Wang, Landweber iteration method for simultaneous inversion of the source term and initial data in a time-fractional diffusion equation, J. Appl. Math. Comput., 2022, 68(5), 3219–3250. doi: 10.1007/s12190-021-01656-0

    CrossRef Google Scholar

    [37] J. Wen, X. -J. Ren and S. -J. Wang, Simultaneous determination of source term and initial value in the heat conduction problem by modified quasi-reversibility regularization method, Numerical Heat Transfer, Part B: Fundamentals, 2022, 82(3–4), 112–127. doi: 10.1080/10407790.2022.2079281

    CrossRef Google Scholar

    [38] J. Wen, C. -W. Yue, Z. -X. Liu and S. -J. Wang, Fractional tikhonov regularization method for simultaneous inversion of the source term and initial data in a time-fractional diffusion equation, Rocky Mountain Journal of Mathematics, 2023, 53(1), 249–273.

    Google Scholar

    [39] X. -T. Xiong, X. -M. Xue and Z. Qian, A modified iterative regularization method for ill-posed problems, Appl. Numer. Math., 2017, 122, 108–128. doi: 10.1016/j.apnum.2017.08.004

    CrossRef Google Scholar

    [40] F. Yang, J. -L. Fu, P. Fan and X. -X. Li, Fractional Landweber iterative regularization method for identifying the unknown source of the time-fractional diffusion problem, Acta Appl. Math., 2021, 175, Paper No. 13, 19.

    Google Scholar

    [41] F. Yang, X. Liu, X. -X. Li and C. -Y. Ma, Landweber iterative regularization method for identifying the unknown source of the time-fractional diffusion equation, Adv. Difference Equ., 2017, Paper No. 388, 15.

    Google Scholar

    [42] F. Yang, Y. -P. Ren, X. -X. Li and D. -G. Li, Landweber iterative method for identifying a space-dependent source for the time-fractional diffusion equation, Bound. Value Probl., 2017, Paper No. 163, 19.

    Google Scholar

    [43] F. Yang, Y. Zhang and X. -X. Li, Landweber iterative method for identifying the initial value problem of the time-space fractional diffusion-wave equation, Numerical Algorithms, 2020, 83(4), 1509–1530. doi: 10.1007/s11075-019-00734-6

    CrossRef Google Scholar

    [44] L. Yang, Z. -C. Deng and Y. -C. Hon, Simultaneous identification of unknown initial temperature and heat source, Dynam. Systems Appl., 2016, 25(4), 583–602.

    Google Scholar

    [45] Y. Zhang, T. Wei and Y. -X. Zhang, Simultaneous inversion of two initial values for a time-fractional diffusion-wave equation, Numer. Methods Partial Differential Equations, 2021, 37(1), 24–43. doi: 10.1002/num.22517

    CrossRef Google Scholar

    [46] Y. Zhou, J. Wei He, B. Ahmad and N. Huy Tuan, Existence and regularity results of a backward problem for fractional diffusion equations, Mathematical Methods in the Applied Sciences, 2019, 42(18), 6775–6790.

    Google Scholar

Figures(10)

Article Metrics

Article views(1650) PDF downloads(412) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint