Citation: | Xing Zhang, Yanpeng Zheng, Zhaolin Jiang, Heejung Byun. EFFICIENT ALGORITHMS FOR REAL SYMMETRIC TOEPLITZ LINEAR SYSTEM WITH LOW-RANK PERTURBATIONS AND ITS APPLICATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 106-118. doi: 10.11948/20230073 |
This study investigates efficient algorithms for solving the real symmetric Toeplitz linear system with low-rank perturbations. Based on a new factorization of the real symmetric Toeplitz matrix inversion, we propose a novel and effective method to solve a sequence of linear equations with a same symmetric Toeplitz matrix. Together with the application of the Sherman-Morrison-Woodbury formula, the symmetric Toeplitz linear system with low-rank perturbations can be solved by two proposed algorithms. Moreover, the (structured) perturbation analysis and the applications in image encryption and decryption are given. The numerical results are presented to verify the theoretical analysis.
[1] | Z. -Z. Bai, R. H. Chan and Z. -R. Ren, On order-reducible sinc discretizations and block-diagonal preconditioning methods for linear third-order ordinary differential equations, Numer. Linear Algebra Appl., 2014, 21, 108-135. doi: 10.1002/nla.1868 |
[2] | Z. -Z. Bai and K. -Y. Lu, Fast matrix splitting preconditioners for higher dimensional spatial fractional diffusion equations, J. Comput. Phys., 2020, 404, 1. |
[3] | M. Batista and A. A. Karawia, The use of the Sherman-Morrison-Woodbury formula to solve cyclic block tri-diagonal and cyclic block penta-diagonal linear systems of equations, Appl. Math. Comput., 2009, 210, 558-563. |
[4] | R. E. Blahut, Fast Algorithms for Signal Processing, Cambridge University Press, New York, 2010. |
[5] | A. Chaves, J. G. Azadani and H. Alsalman, et al., Bandgap engineering of two-dimensional semiconductor materials, Npj 2D Mater. Appl., 2020, 4, 29. doi: 10.1038/s41699-020-00162-4 |
[6] | L. Du, T. Sogabe and S. -L. Zhang, A fast algorithm for solving tridiagonal quasi-Toeplitz linear systems, Appl. Math. Lett., 2018, 75, 74-81. doi: 10.1016/j.aml.2017.06.016 |
[7] | Y. -R. Fu, X. -Y. Jiang, Z. -L. Jiang and S. Jhang, Fast algorithms for finding the solution of CUPL-Toeplitz linear system from Markov chain, Appl. Math. Comput., 2021, 396, 125859. |
[8] | I. Gohberg and V. Olshevsky, Circulants, displacements and decompositions of matrices, Integr. Equat. Oper. Th., 1992, 15, 730-743. doi: 10.1007/BF01200697 |
[9] | X. -M. Gu, T. -Z. Huang, X. -L. Zhao, H. -B. Li and L. Li, Fast iterative solvers for numerical simulations of scattering and radiation on thin wires, J. Electromagn. Waves Appl., 2015, 29(10), 1281-1296. doi: 10.1080/09205071.2015.1042559 |
[10] | X. -M. Gu, T. -Z. Huang, T. -Z. Zhao, H. -B. Li and L. Li, Strang-type preconditioners for solving fractional diffusion equations by boundary value methods, J. Comput. Appl. Math., 2015, 277, 73-86. doi: 10.1016/j.cam.2014.08.011 |
[11] | Y. -C. Huang and S. -L. Lei, A fast numerical method for block lower triangular Toeplitz with dense Toeplitz blocks system with applications to time-space fractional diffusion equations, Numer. Algor., 2017, 76(3), 605-616. doi: 10.1007/s11075-017-0272-6 |
[12] | J. -T. Jia and S. -M. Li, New algorithms for numerically solving a class of bordered tridiagonal systems of linear equations, Comput. Math. Appl., 2019, 78(1), 144-151. doi: 10.1016/j.camwa.2019.02.028 |
[13] | X. -Y. Jiang and K. Hong, Skew cyclic displacements and inversions of two innovative patterned matrices, Appl. Math. Comput., 2017, 308, 174-184. |
[14] | Z. -L. Jiang, X. -T. Chen and J. -M. Wang, The explicit inverses of CUPL-Toeplitz and CUPL-Hankel matrices, East Asian J. Appl. Math., 2017, 7(1), 38-54. doi: 10.4208/eajam.070816.191016a |
[15] | Z. -L. Jiang and T. -T. Xu, Norm estimates of ω-circulant operator matrices and isomorphic operators for ω-circulant algebra, Sci. China Math., 2016, 59, 351-366. doi: 10.1007/s11425-015-5051-z |
[16] | Z. -L. Jiang and Z. -X. Zhou, Circulant Matrices, Chengdu Technology University, Chengdu, China, 1999. |
[17] | S. -L. Lei and Y. -C. Huang, Fast algorithms for high-order numerical methods for space fractional diffusion equations, Int. J. Comput. Math., 2016, 94(5), 1062-1078. |
[18] | M. Li, X. -M. Gu, C. -M. Huang, M. -F. Fei and G. -Y. Zhang, A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations, J. Comput. Phys., 2018, 358, 256-282. doi: 10.1016/j.jcp.2017.12.044 |
[19] | Y. -H. Li, X. Han and Y. Cao, et al., Quantum random number generation with uncharacterized laser and sunlight, Npj Quantum Inform., 2019, 5, 97. doi: 10.1038/s41534-019-0208-1 |
[20] | Z. -Y. Liu, S. -H. Chen, W. -J. Xu and Y. -L. Zhang, The eigen-structures of real (skew) circulant matrices with some applications, Comput. Appl. Math., 2019, 38, 178. doi: 10.1007/s40314-019-0971-9 |
[21] | Z. -Y. Liu, S. Li, Y. Yin and Y. -L. Zhang, Fast solvers for tridiagonal Toeplitz linear systems, Comput. Appl. Math., 2020, 39, 315. doi: 10.1007/s40314-020-01369-3 |
[22] | Z. -Y. Liu, X. -R. Qin, N. -C. Wu and Y. -L. Zhang, The shifted classical circulant and skew circulant splitting iterative methods for Toeplitz matrices, Canad. Math. Bull., 2017, 60(4), 807-815. doi: 10.4153/CMB-2016-077-5 |
[23] | Z. -Y. Liu, N. -C. Wu, X. -R. Qin and Y. -L. Zhang, Trigonometric transform splitting methods for real symmetric Toeplitz systems, Comput. Math. Appl., 2018, 75, 2782-2794. doi: 10.1016/j.camwa.2018.01.008 |
[24] | W. -H. Luo, X. -M. Gu, Y. Liu and M. Jing, A Lagrange-quadratic spline optimal collocation method for the time tempered fractional diffusion equation, Math. Comput. Simulat., 2021, 182, 1-24. doi: 10.1016/j.matcom.2020.10.016 |
[25] | A. S. Nicholas, Z. -H. Peter, C. Matteo and D. H. Kenneth, Distributed coding of choice, action and engagement across the mouse brain, Nature, 2019, 576, 266-273. doi: 10.1038/s41586-019-1787-x |
[26] | J. Pan, R. Ke, M. K. Ng and H. -W. Sun, Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations, SIAM J. Sci. Comput., 2014, 36(6), A2698-A2719. doi: 10.1137/130931795 |
[27] | Y. Saad, Iterative Methods for Sparse Linear Systems, second ed., SIAM, Philadelphia, 2003. |
[28] | A. T. Winder, C. Echagarruga, Q. -G. Zhang and P. J. Drew, Weak correlations between hemodynamic signals and ongoing neural activity during the resting state, Nat. Neurosci., 2017, 20, 1761-1769. doi: 10.1038/s41593-017-0007-y |
[29] | J. Wu, X. -M. Gu, Y. -L. Zhao, Y. -Y. Huang and B. Carpentieri, A note on the structured perturbation analysis for the inversion formula of Toeplitz matrices, Japan J. Indust. Appl. Math., 2023, 40(1), 645-663. doi: 10.1007/s13160-022-00543-w |
[30] | P. -P. Xie and Y. -M. Wei, The stability of formulae of the Gohberg-Semencul-Trench type for Moore-Penrose and group inverses of Toeplitz matrices, Linear Algebra Appl., 2016, 498, 117-135. doi: 10.1016/j.laa.2015.01.029 |
[31] | S. Yoon, H. Lee, J. H. Hong, Y. -S. Lim and W. Choi, Laser scanning reflection-matrix microscopy for aberration-free imaging through intact mouse skull, Nat. Commun., 2020, 11, 5721. doi: 10.1038/s41467-020-19550-x |
[32] | Q. -G. Zhang, M. Roche and K. W. Gheres, et al., Cerebral oxygenation during locomotion is modulated by respiration, Nat. Commun., 2019, 10, 1-15. doi: 10.1038/s41467-018-07882-8 |
[33] | X. Zhang, X. -Y. Jiang, Z. -L. Jiang and H. Byun, An improvement of methods for solving the CUPL-Toeplitz linear system, Appl. Math. Comput., 2022, 421, 126932. |
[34] | X. Zhang, Y. -P. Zheng, Z. -L. Jiang and H. Byun, Numerical algorithms for corner-modified symmetric Toeplitz linear system with applications to image encryption and decryption, J. Appl. Math. Comput., 2022, 69, 1967-1987. |
[35] | Y. -L. Zhao and X. -M. Gu, A. Ostermann, A preconditioning technique for an all-at-once system from Volterra subdiffusion equations with graded time steps, J. Sci. Comput., 2021, 88(1), 11. doi: 10.1007/s10915-021-01527-7 |
[36] | Y. -P. Zheng, S. Shon and J. Kim, Cyclic displacements and decompositions of inverse matrices for CUPL Toeplitz matrices, J. Math. Anal. Appl., 2017, 455, 727-741. doi: 10.1016/j.jmaa.2017.06.016 |
Image encryption and decryption of
Image encryption and decryption of
Image encryption and decryption of